Spaces:
Sleeping
Sleeping
Update src/bin/target_family_classifier.py
Browse files
src/bin/target_family_classifier.py
CHANGED
@@ -4,6 +4,8 @@ Created on Mon Jun 8 09:32:26 2020
|
|
4 |
|
5 |
@author: Muammer
|
6 |
"""
|
|
|
|
|
7 |
|
8 |
import numpy as np
|
9 |
from sklearn.model_selection import cross_validate
|
@@ -88,7 +90,7 @@ def score_protein_rep(dataset):
|
|
88 |
|
89 |
vecsize = 0
|
90 |
#protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv')
|
91 |
-
protein_list = pd.read_csv('../data/preprocess/entry_class_nn.csv')
|
92 |
dataframe = pd.read_csv(representation_path)
|
93 |
#dataframe = convert_dataframe_to_multi_col(dataframe)
|
94 |
#dataframe = pd.read_pickle(pkl_data_path)
|
@@ -129,8 +131,8 @@ def score_protein_rep(dataset):
|
|
129 |
mcc_perclass = []
|
130 |
sup_perclass = []
|
131 |
report_list = []
|
132 |
-
train_index = pd.read_csv('../data/preprocess/indexes/'+dataset+'_trainindex.csv')
|
133 |
-
test_index = pd.read_csv('../data/preprocess/indexes/testindex_family.csv')
|
134 |
train_index = train_index.dropna(axis=1)
|
135 |
test_index = test_index.dropna(axis=1)
|
136 |
#print(train_index)
|
@@ -187,7 +189,7 @@ def score_protein_rep(dataset):
|
|
187 |
report_list.append(class_report)
|
188 |
|
189 |
if detailed_output:
|
190 |
-
conf.to_csv('../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv', index=None)
|
191 |
|
192 |
f1_perclass = pd.concat(f1_perclass, axis=1)
|
193 |
ac_perclass = pd.concat(ac_perclass, axis=1)
|
@@ -195,7 +197,7 @@ def score_protein_rep(dataset):
|
|
195 |
sup_perclass = pd.concat(sup_perclass, axis=1)
|
196 |
|
197 |
report_list = pd.concat(report_list, axis=1)
|
198 |
-
report_list.to_csv('../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv')
|
199 |
|
200 |
report = pd.DataFrame()
|
201 |
f1mean = np.mean(f1, axis=0)
|
@@ -212,7 +214,7 @@ def score_protein_rep(dataset):
|
|
212 |
report['Accuracy'] = [acmean, acstd]
|
213 |
report['MCC'] = [mccmean, mccstd]
|
214 |
|
215 |
-
report.to_csv('../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False)
|
216 |
#report.to_csv('scores_general.csv')
|
217 |
#print(report)
|
218 |
if detailed_output:
|
|
|
4 |
|
5 |
@author: Muammer
|
6 |
"""
|
7 |
+
import os
|
8 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
|
10 |
import numpy as np
|
11 |
from sklearn.model_selection import cross_validate
|
|
|
90 |
|
91 |
vecsize = 0
|
92 |
#protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv')
|
93 |
+
protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
|
94 |
dataframe = pd.read_csv(representation_path)
|
95 |
#dataframe = convert_dataframe_to_multi_col(dataframe)
|
96 |
#dataframe = pd.read_pickle(pkl_data_path)
|
|
|
131 |
mcc_perclass = []
|
132 |
sup_perclass = []
|
133 |
report_list = []
|
134 |
+
train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/'+dataset+'_trainindex.csv'))
|
135 |
+
test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
|
136 |
train_index = train_index.dropna(axis=1)
|
137 |
test_index = test_index.dropna(axis=1)
|
138 |
#print(train_index)
|
|
|
189 |
report_list.append(class_report)
|
190 |
|
191 |
if detailed_output:
|
192 |
+
conf.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv'), index=None)
|
193 |
|
194 |
f1_perclass = pd.concat(f1_perclass, axis=1)
|
195 |
ac_perclass = pd.concat(ac_perclass, axis=1)
|
|
|
197 |
sup_perclass = pd.concat(sup_perclass, axis=1)
|
198 |
|
199 |
report_list = pd.concat(report_list, axis=1)
|
200 |
+
report_list.to_csv(os,path,join(script_dir, '../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv'))
|
201 |
|
202 |
report = pd.DataFrame()
|
203 |
f1mean = np.mean(f1, axis=0)
|
|
|
214 |
report['Accuracy'] = [acmean, acstd]
|
215 |
report['MCC'] = [mccmean, mccstd]
|
216 |
|
217 |
+
report.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False))
|
218 |
#report.to_csv('scores_general.csv')
|
219 |
#print(report)
|
220 |
if detailed_output:
|