mgyigit commited on
Commit
7dcad68
·
verified ·
1 Parent(s): 794f79d

Update src/bin/target_family_classifier.py

Browse files
src/bin/target_family_classifier.py CHANGED
@@ -4,6 +4,8 @@ Created on Mon Jun 8 09:32:26 2020
4
 
5
  @author: Muammer
6
  """
 
 
7
 
8
  import numpy as np
9
  from sklearn.model_selection import cross_validate
@@ -88,7 +90,7 @@ def score_protein_rep(dataset):
88
 
89
  vecsize = 0
90
  #protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv')
91
- protein_list = pd.read_csv('../data/preprocess/entry_class_nn.csv')
92
  dataframe = pd.read_csv(representation_path)
93
  #dataframe = convert_dataframe_to_multi_col(dataframe)
94
  #dataframe = pd.read_pickle(pkl_data_path)
@@ -129,8 +131,8 @@ def score_protein_rep(dataset):
129
  mcc_perclass = []
130
  sup_perclass = []
131
  report_list = []
132
- train_index = pd.read_csv('../data/preprocess/indexes/'+dataset+'_trainindex.csv')
133
- test_index = pd.read_csv('../data/preprocess/indexes/testindex_family.csv')
134
  train_index = train_index.dropna(axis=1)
135
  test_index = test_index.dropna(axis=1)
136
  #print(train_index)
@@ -187,7 +189,7 @@ def score_protein_rep(dataset):
187
  report_list.append(class_report)
188
 
189
  if detailed_output:
190
- conf.to_csv('../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv', index=None)
191
 
192
  f1_perclass = pd.concat(f1_perclass, axis=1)
193
  ac_perclass = pd.concat(ac_perclass, axis=1)
@@ -195,7 +197,7 @@ def score_protein_rep(dataset):
195
  sup_perclass = pd.concat(sup_perclass, axis=1)
196
 
197
  report_list = pd.concat(report_list, axis=1)
198
- report_list.to_csv('../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv')
199
 
200
  report = pd.DataFrame()
201
  f1mean = np.mean(f1, axis=0)
@@ -212,7 +214,7 @@ def score_protein_rep(dataset):
212
  report['Accuracy'] = [acmean, acstd]
213
  report['MCC'] = [mccmean, mccstd]
214
 
215
- report.to_csv('../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False)
216
  #report.to_csv('scores_general.csv')
217
  #print(report)
218
  if detailed_output:
 
4
 
5
  @author: Muammer
6
  """
7
+ import os
8
+ script_dir = os.path.dirname(os.path.abspath(__file__))
9
 
10
  import numpy as np
11
  from sklearn.model_selection import cross_validate
 
90
 
91
  vecsize = 0
92
  #protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv')
93
+ protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
94
  dataframe = pd.read_csv(representation_path)
95
  #dataframe = convert_dataframe_to_multi_col(dataframe)
96
  #dataframe = pd.read_pickle(pkl_data_path)
 
131
  mcc_perclass = []
132
  sup_perclass = []
133
  report_list = []
134
+ train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/'+dataset+'_trainindex.csv'))
135
+ test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
136
  train_index = train_index.dropna(axis=1)
137
  test_index = test_index.dropna(axis=1)
138
  #print(train_index)
 
189
  report_list.append(class_report)
190
 
191
  if detailed_output:
192
+ conf.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv'), index=None)
193
 
194
  f1_perclass = pd.concat(f1_perclass, axis=1)
195
  ac_perclass = pd.concat(ac_perclass, axis=1)
 
197
  sup_perclass = pd.concat(sup_perclass, axis=1)
198
 
199
  report_list = pd.concat(report_list, axis=1)
200
+ report_list.to_csv(os,path,join(script_dir, '../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv'))
201
 
202
  report = pd.DataFrame()
203
  f1mean = np.mean(f1, axis=0)
 
214
  report['Accuracy'] = [acmean, acstd]
215
  report['MCC'] = [mccmean, mccstd]
216
 
217
+ report.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False))
218
  #report.to_csv('scores_general.csv')
219
  #print(report)
220
  if detailed_output: