Spaces:
Sleeping
Sleeping
Merge branch 'main' of https://huggingface.co/spaces/mgyigit/probe3
Browse files- src/about.py +1 -1
- src/bin/semantic_similarity_infer.py +4 -4
src/about.py
CHANGED
@@ -93,7 +93,7 @@ Submit your own representation models and compare their performance across these
|
|
93 |
|
94 |
If you find PROBE useful, please consider citing our work."""
|
95 |
|
96 |
-
similarity_tasks_options = ["
|
97 |
function_prediction_aspect_options = ["MF", "BP", "CC", "All_Aspects"]
|
98 |
function_prediction_dataset_options = ["High", "Middle", "Low", "All_Data_Sets"]
|
99 |
family_prediction_dataset_options = ["nc", "uc50", "uc30", "mm15"]
|
|
|
93 |
|
94 |
If you find PROBE useful, please consider citing our work."""
|
95 |
|
96 |
+
similarity_tasks_options = ["sparse", "200", "500"]
|
97 |
function_prediction_aspect_options = ["MF", "BP", "CC", "All_Aspects"]
|
98 |
function_prediction_dataset_options = ["High", "Middle", "Low", "All_Data_Sets"]
|
99 |
family_prediction_dataset_options = ["nc", "uc50", "uc30", "mm15"]
|
src/bin/semantic_similarity_infer.py
CHANGED
@@ -52,7 +52,7 @@ def calculateCorrelationforOntology(aspect, matrix_type):
|
|
52 |
similarityMatrixNameDict = {
|
53 |
"All": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix.csv"),
|
54 |
"500": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
|
55 |
-
"
|
56 |
"200": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_200_proteins.csv")
|
57 |
}
|
58 |
|
@@ -64,7 +64,7 @@ def calculateCorrelationforOntology(aspect, matrix_type):
|
|
64 |
for prot in proteinList:
|
65 |
proteinListNew.append(prot)
|
66 |
|
67 |
-
if matrix_type == "
|
68 |
sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_" + aspect + "_for_highest_500.npy")
|
69 |
sparsified_similarity_coordinates = np.load(sparsified_path)
|
70 |
protParamList = sparsified_similarity_coordinates
|
@@ -77,7 +77,7 @@ def calculateCorrelationforOntology(aspect, matrix_type):
|
|
77 |
for tup in tqdm(protParamList):
|
78 |
i = tup[0]
|
79 |
j = tup[1]
|
80 |
-
if matrix_type == "
|
81 |
protein1 = proteinListNew[i]
|
82 |
protein2 = proteinListNew[j]
|
83 |
real = human_proteinSimilarityMatrix.loc[protein1, protein2]
|
@@ -113,7 +113,7 @@ def calculate_all_correlations():
|
|
113 |
corr, p_value = calculateCorrelationforOntology(aspect, similarity_matrix_type)
|
114 |
|
115 |
corr_key = f"{similarity_matrix_type}_{aspect}_correlation"
|
116 |
-
p_value_key = f"{similarity_matrix_type}_{aspect}
|
117 |
|
118 |
results[corr_key] = corr
|
119 |
results[p_value_key] = p_value
|
|
|
52 |
similarityMatrixNameDict = {
|
53 |
"All": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix.csv"),
|
54 |
"500": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
|
55 |
+
"sparse": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
|
56 |
"200": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_200_proteins.csv")
|
57 |
}
|
58 |
|
|
|
64 |
for prot in proteinList:
|
65 |
proteinListNew.append(prot)
|
66 |
|
67 |
+
if matrix_type == "sparse":
|
68 |
sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_" + aspect + "_for_highest_500.npy")
|
69 |
sparsified_similarity_coordinates = np.load(sparsified_path)
|
70 |
protParamList = sparsified_similarity_coordinates
|
|
|
77 |
for tup in tqdm(protParamList):
|
78 |
i = tup[0]
|
79 |
j = tup[1]
|
80 |
+
if matrix_type == "sparse":
|
81 |
protein1 = proteinListNew[i]
|
82 |
protein2 = proteinListNew[j]
|
83 |
real = human_proteinSimilarityMatrix.loc[protein1, protein2]
|
|
|
113 |
corr, p_value = calculateCorrelationforOntology(aspect, similarity_matrix_type)
|
114 |
|
115 |
corr_key = f"{similarity_matrix_type}_{aspect}_correlation"
|
116 |
+
p_value_key = f"{similarity_matrix_type}_{aspect}_pvalue"
|
117 |
|
118 |
results[corr_key] = corr
|
119 |
results[p_value_key] = p_value
|