Spaces:
Sleeping
Sleeping
Update src/vis_utils.py
Browse files- src/vis_utils.py +107 -0
src/vis_utils.py
CHANGED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import yaml
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
import plotnine as p9
|
10 |
+
|
11 |
+
from about import *
|
12 |
+
global data_component, filter_component
|
13 |
+
|
14 |
+
def get_method_color(method):
|
15 |
+
return color_dict.get(method, 'black') # If method is not in color_dict, use black
|
16 |
+
|
17 |
+
def draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title):
|
18 |
+
df = pd.read_csv(CSV_RESULT_PATH)
|
19 |
+
# Filter the dataframe based on selected methods
|
20 |
+
filtered_df = df[df['method_name'].isin(methods_selected)]
|
21 |
+
|
22 |
+
def get_method_color(method):
|
23 |
+
return color_dict.get(method.upper(), 'black')
|
24 |
+
|
25 |
+
# Add a new column to the dataframe for the color
|
26 |
+
filtered_df['color'] = filtered_df['method_name'].apply(get_method_color)
|
27 |
+
|
28 |
+
adjust_text_dict = {
|
29 |
+
'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
|
30 |
+
'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
|
31 |
+
'force_text': (.0, 1.), 'force_objects': (.0, 1.),
|
32 |
+
'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
|
33 |
+
}
|
34 |
+
|
35 |
+
# Create the scatter plot using plotnine (ggplot)
|
36 |
+
g = (p9.ggplot(data=filtered_df,
|
37 |
+
mapping=p9.aes(x=x_metric, # Use the selected x_metric
|
38 |
+
y=y_metric, # Use the selected y_metric
|
39 |
+
color='color', # Use the dynamically generated color
|
40 |
+
label='method_names')) # Label each point by the method name
|
41 |
+
+ p9.geom_point(size=3) # Add points with no jitter, set point size
|
42 |
+
+ p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points
|
43 |
+
+ p9.labs(title=title, x=f"{x_metric}", y=f"{y_metric}") # Dynamic labels for X and Y axes
|
44 |
+
+ p9.scale_color_identity() # Use colors directly from the dataframe
|
45 |
+
+ p9.theme(legend_position='none',
|
46 |
+
figure_size=(8, 8), # Set figure size
|
47 |
+
axis_text=p9.element_text(size=10),
|
48 |
+
axis_title_x=p9.element_text(size=12),
|
49 |
+
axis_title_y=p9.element_text(size=12))
|
50 |
+
)
|
51 |
+
|
52 |
+
# Save the plot as an image
|
53 |
+
save_path = "./plot_images" # Ensure this folder exists or adjust the path
|
54 |
+
os.makedirs(save_path, exist_ok=True) # Create directory if it doesn't exist
|
55 |
+
filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
|
56 |
+
|
57 |
+
g.save(filename=filename, dpi=400)
|
58 |
+
|
59 |
+
return filename
|
60 |
+
|
61 |
+
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric):
|
62 |
+
if benchmark_type == 'flexible':
|
63 |
+
# Use general visualizer logic
|
64 |
+
return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric)
|
65 |
+
elif benchmark_type == 'similarity':
|
66 |
+
title = f"{x_metric} vs {y_metric}"
|
67 |
+
return draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title)
|
68 |
+
elif benchmark_type == 'Benchmark 3':
|
69 |
+
return benchmark_3_plot(x_metric, y_metric)
|
70 |
+
elif benchmark_type == 'Benchmark 4':
|
71 |
+
return benchmark_4_plot(x_metric, y_metric)
|
72 |
+
else:
|
73 |
+
return "Invalid benchmark type selected."
|
74 |
+
|
75 |
+
|
76 |
+
def get_baseline_df(selected_methods, selected_metrics):
|
77 |
+
df = pd.read_csv(CSV_RESULT_PATH)
|
78 |
+
present_columns = ["method_name"] + selected_metrics
|
79 |
+
df = df[df['method_name'].isin(selected_methods)][present_columns]
|
80 |
+
return df
|
81 |
+
|
82 |
+
def general_visualizer(methods_selected, x_metric, y_metric):
|
83 |
+
df = pd.read_csv(CSV_RESULT_PATH)
|
84 |
+
filtered_df = df[df['method_name'].isin(methods_selected)]
|
85 |
+
|
86 |
+
# Create a Seaborn lineplot with method as hue
|
87 |
+
plt.figure(figsize=(10, 8)) # Increase figure size
|
88 |
+
sns.lineplot(
|
89 |
+
data=filtered_df,
|
90 |
+
x=x_metric,
|
91 |
+
y=y_metric,
|
92 |
+
hue="method_name", # Different colors for different methods
|
93 |
+
marker="o", # Add markers to the line plot
|
94 |
+
)
|
95 |
+
|
96 |
+
# Add labels and title
|
97 |
+
plt.xlabel(x_metric)
|
98 |
+
plt.ylabel(y_metric)
|
99 |
+
plt.title(f'{y_metric} vs {x_metric} for selected methods')
|
100 |
+
plt.grid(True)
|
101 |
+
|
102 |
+
# Save the plot to display it in Gradio
|
103 |
+
plot_path = "plot.png"
|
104 |
+
plt.savefig(plot_path)
|
105 |
+
plt.close()
|
106 |
+
|
107 |
+
return plot_path
|