mgyigit commited on
Commit
e2ab1ac
·
verified ·
1 Parent(s): c44e698

Update src/bin/PROBE.py

Browse files
Files changed (1) hide show
  1. src/bin/PROBE.py +0 -44
src/bin/PROBE.py CHANGED
@@ -6,16 +6,6 @@ from . import target_family_classifier as tfc
6
  from . import function_predictor as fp
7
  from . import binding_affinity_estimator as bae
8
 
9
- print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n")
10
-
11
- with open('probe_config.yaml') as f:
12
- args = yaml.load(f, Loader=yaml.FullLoader)
13
-
14
- if args["benchmark"] not in ["similarity","family","function","affinity","all"]:
15
- parser.error('At least one benchmark type should be selected')
16
-
17
- print(args)
18
-
19
  def load_representation(multi_col_representation_vector_file_path):
20
  multi_col_representation_vector = pd.read_csv(multi_col_representation_vector_file_path)
21
  vals = multi_col_representation_vector.iloc[:,1:(len(multi_col_representation_vector.columns))]
@@ -25,40 +15,6 @@ def load_representation(multi_col_representation_vector_file_path):
25
  original_values_as_df.loc[index] = [multi_col_representation_vector.iloc[index]['Entry']] + [list_of_floats]
26
  return original_values_as_df
27
 
28
- if args["benchmark"] in ["similarity","function","all"]:
29
- print("\nRepresentation vectors are loading...\n")
30
- representation_dataframe = load_representation(args["representation_file_human"])
31
-
32
- if args["benchmark"] in ["similarity","all"]:
33
- print("\nSemantic similarity Inference Benchmark is running...\n")
34
- ssi.representation_dataframe = representation_dataframe
35
- ssi.representation_name = args["representation_name"]
36
- ssi.protein_names = ssi.representation_dataframe['Entry'].tolist()
37
- ssi.similarity_tasks = args["similarity_tasks"]
38
- ssi.detailed_output = args["detailed_output"]
39
- ssi.calculate_all_correlations()
40
- if args["benchmark"] in ["function","all"]:
41
- print("\n\nOntology-based protein function prediction benchmark is running...\n")
42
- fp.aspect_type = args["function_prediction_aspect"]
43
- fp.dataset_type = args["function_prediction_dataset"]
44
- fp.representation_dataframe = representation_dataframe
45
- fp.representation_name = args["representation_name"]
46
- fp.detailed_output = args["detailed_output"]
47
- fp.pred_output()
48
- if args["benchmark"] in ["family","all"]:
49
- print("\n\nDrug target protein family classification benchmark is running...\n")
50
- tfc.representation_path = args["representation_file_human"]
51
- tfc.representation_name = args["representation_name"]
52
- tfc.detailed_output = args["detailed_output"]
53
- for dataset in args["family_prediction_dataset"]:
54
- tfc.score_protein_rep(dataset)
55
- if args["benchmark"] in ["affinity","all"]:
56
- print("\n\nProtein-protein binding affinity estimation benchmark is running...\n")
57
- bae.skempi_vectors_path = args["representation_file_affinity"]
58
- bae.representation_name = args["representation_name"]
59
- bae.predict_affinities_and_report_results()
60
- print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
61
-
62
  def run_probe(benchmarks, representation_name, representation_file_human, representation_file_affinity, similarity_tasks=["Sparse","200","500"], function_prediction_aspec="All_Aspects", function_prediction_dataset="All_Data_Sets", family_prediction_dataset=["nc","uc50","uc30","mm15"], detailed_output=False):
63
  print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n")
64
 
 
6
  from . import function_predictor as fp
7
  from . import binding_affinity_estimator as bae
8
 
 
 
 
 
 
 
 
 
 
 
9
  def load_representation(multi_col_representation_vector_file_path):
10
  multi_col_representation_vector = pd.read_csv(multi_col_representation_vector_file_path)
11
  vals = multi_col_representation_vector.iloc[:,1:(len(multi_col_representation_vector.columns))]
 
15
  original_values_as_df.loc[index] = [multi_col_representation_vector.iloc[index]['Entry']] + [list_of_floats]
16
  return original_values_as_df
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  def run_probe(benchmarks, representation_name, representation_file_human, representation_file_affinity, similarity_tasks=["Sparse","200","500"], function_prediction_aspec="All_Aspects", function_prediction_dataset="All_Data_Sets", family_prediction_dataset=["nc","uc50","uc30","mm15"], detailed_output=False):
19
  print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n")
20