mgyigit commited on
Commit
e4eaeef
·
verified ·
1 Parent(s): a6e0a6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -2
app.py CHANGED
@@ -28,7 +28,16 @@ def add_new_eval(
28
  ):
29
  representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
30
  results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
31
- return None
 
 
 
 
 
 
 
 
 
32
 
33
  # Function to update leaderboard dynamically based on user selection
34
  def update_leaderboard(selected_methods, selected_metrics):
@@ -94,7 +103,7 @@ with block:
94
  method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
95
 
96
  # Button to draw the plot for the selected benchmark
97
- plot_button = gr.Button("Plot Visualization")
98
  plot_output = gr.Image(label="Plot")
99
 
100
  # Update metric selectors when benchmark type is chosen
 
28
  ):
29
  representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
30
  results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
31
+
32
+ for benchmark_type in results:
33
+ if benchmark_type == 'similarity':
34
+ save_similarity_output(results['similarity'], representation_name)
35
+ elif benchmark_type == 'function':
36
+ save_function_output(results['function'], representation_name)
37
+ elif benchmark_type == 'family':
38
+ save_family_output(results['family'], representation_name)
39
+ elif benchmark_type == "affinity":
40
+ save_affinity_output(results['affinity', representation_name])
41
 
42
  # Function to update leaderboard dynamically based on user selection
43
  def update_leaderboard(selected_methods, selected_metrics):
 
103
  method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
104
 
105
  # Button to draw the plot for the selected benchmark
106
+ plot_button = gr.Button("Plot")
107
  plot_output = gr.Image(label="Plot")
108
 
109
  # Update metric selectors when benchmark type is chosen