Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,76 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
from openprompt import PromptDataLoader
|
4 |
from openprompt.prompts import ManualVerbalizer
|
5 |
from openprompt.prompts import ManualTemplate
|
|
|
6 |
from openprompt import PromptForClassification
|
7 |
|
8 |
-
unmasker = pipeline('fill-mask', model="CCCC/ARCH_tuned_bert") #'bert-base-uncased')
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
return output
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
footer {display:none !important}
|
21 |
-
.output-markdown{display:none !important}
|
22 |
-
.gr-button-primary {
|
23 |
-
z-index: 14;
|
24 |
-
height: 43px;
|
25 |
-
width: 130px;
|
26 |
-
left: 0px;
|
27 |
-
top: 0px;
|
28 |
-
padding: 0px;
|
29 |
-
cursor: pointer !important;
|
30 |
-
background: none rgb(17, 20, 45) !important;
|
31 |
-
border: none !important;
|
32 |
-
text-align: center !important;
|
33 |
-
font-family: Poppins !important;
|
34 |
-
font-size: 14px !important;
|
35 |
-
font-weight: 500 !important;
|
36 |
-
color: rgb(255, 255, 255) !important;
|
37 |
-
line-height: 1 !important;
|
38 |
-
border-radius: 12px !important;
|
39 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
40 |
-
box-shadow: none !important;
|
41 |
-
}
|
42 |
-
.gr-button-primary:hover{
|
43 |
-
z-index: 14;
|
44 |
-
height: 43px;
|
45 |
-
width: 130px;
|
46 |
-
left: 0px;
|
47 |
-
top: 0px;
|
48 |
-
padding: 0px;
|
49 |
-
cursor: pointer !important;
|
50 |
-
background: none rgb(37, 56, 133) !important;
|
51 |
-
border: none !important;
|
52 |
-
text-align: center !important;
|
53 |
-
font-family: Poppins !important;
|
54 |
-
font-size: 14px !important;
|
55 |
-
font-weight: 500 !important;
|
56 |
-
color: rgb(255, 255, 255) !important;
|
57 |
-
line-height: 1 !important;
|
58 |
-
border-radius: 12px !important;
|
59 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
60 |
-
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
|
61 |
-
}
|
62 |
-
.hover\:bg-orange-50:hover {
|
63 |
-
--tw-bg-opacity: 1 !important;
|
64 |
-
background-color: rgb(229,225,255) !important;
|
65 |
-
}
|
66 |
-
.to-orange-200 {
|
67 |
-
--tw-gradient-to: rgb(37 56 133 / 37%) !important;
|
68 |
-
}
|
69 |
-
.from-orange-400 {
|
70 |
-
--tw-gradient-from: rgb(17, 20, 45) !important;
|
71 |
-
--tw-gradient-to: rgb(255 150 51 / 0);
|
72 |
-
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
|
73 |
-
}
|
74 |
-
.group-hover\:from-orange-500{
|
75 |
-
--tw-gradient-from:rgb(17, 20, 45) !important;
|
76 |
-
--tw-gradient-to: rgb(37 56 133 / 37%);
|
77 |
-
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
|
78 |
-
}
|
79 |
-
.group:hover .group-hover\:text-orange-500{
|
80 |
-
--tw-text-opacity: 1 !important;
|
81 |
-
color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
|
82 |
-
}
|
83 |
-
"""
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from openprompt.plms import load_plm
|
5 |
from openprompt import PromptDataLoader
|
6 |
from openprompt.prompts import ManualVerbalizer
|
7 |
from openprompt.prompts import ManualTemplate
|
8 |
+
from openprompt.data_utils import InputExample
|
9 |
from openprompt import PromptForClassification
|
10 |
|
|
|
11 |
|
12 |
+
def sentiment_analysis(sentence, template, positive, neutral, negative):
|
13 |
+
model_name = "CCCC/ARCH_tuned_bert"
|
14 |
+
template = template.replace('[SENTENCE]', '{"placeholder":"text_a"}')
|
15 |
+
template = template.replace('[MASK]', '{"mask"}')
|
16 |
+
classes = ['positive', 'neutral', 'negative']
|
|
|
17 |
|
18 |
+
label_words = {
|
19 |
+
"positive": positive.split(" "),
|
20 |
+
"neutral": neutral.split(" "),
|
21 |
+
"negative": negative.split(" "),
|
22 |
+
}
|
23 |
+
print(label_words)
|
24 |
+
type_dic = {
|
25 |
+
"CCCC/ARCH_tuned_bert":"bert",
|
26 |
+
"bert-base-uncased":"bert",
|
27 |
+
"roberta-base":"roberta",
|
28 |
+
"yiyanghkust/finbert-pretrain":"bert",
|
29 |
+
"facebook/opt-125m":"opt",
|
30 |
+
"facebook/opt-350m":"opt",
|
31 |
+
}
|
32 |
|
33 |
+
testdata = [InputExample(guid=0,text_a=sentence,label=0)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
plm, tokenizer, model_config, WrapperClass = load_plm(type_dic[model_name], model_name)
|
36 |
+
|
37 |
+
promptTemplate = ManualTemplate(
|
38 |
+
text = template,
|
39 |
+
tokenizer = tokenizer,
|
40 |
+
)
|
41 |
+
promptVerbalizer = ManualVerbalizer(
|
42 |
+
classes = classes,
|
43 |
+
label_words = label_words,
|
44 |
+
tokenizer = tokenizer,
|
45 |
+
)
|
46 |
+
test_dataloader = PromptDataLoader(
|
47 |
+
dataset = testdata,
|
48 |
+
tokenizer = tokenizer,
|
49 |
+
template = promptTemplate,
|
50 |
+
tokenizer_wrapper_class = WrapperClass,
|
51 |
+
batch_size = 1,
|
52 |
+
max_seq_length = 512,
|
53 |
+
)
|
54 |
+
prompt_model = PromptForClassification(
|
55 |
+
plm=plm,
|
56 |
+
template=promptTemplate,
|
57 |
+
verbalizer=promptVerbalizer,
|
58 |
+
freeze_plm=False #whether or not to freeze the pretrained language model
|
59 |
+
)
|
60 |
+
for step, inputs in enumerate(test_dataloader):
|
61 |
+
logits = prompt_model(inputs)
|
62 |
+
|
63 |
+
|
64 |
+
return classes[torch.argmax(logits, dim=-1)[0]]
|
65 |
+
|
66 |
+
|
67 |
+
demo = gr.Interface(fn=sentiment_analysis,
|
68 |
+
inputs = [gr.Textbox(placeholder="Enter sentence here.",label="sentence"),
|
69 |
+
gr.Textbox(placeholder="Your template must have a [SENTENCE] token and a [MASK] token.",label="template"),
|
70 |
+
gr.Textbox(placeholder="Separate words with Spaces.",label="positive"),
|
71 |
+
gr.Textbox(placeholder="Separate words with Spaces.",label="neutral"),
|
72 |
+
gr.Textbox(placeholder="Separate words with Spaces.",label="negative")
|
73 |
+
],
|
74 |
+
outputs="text")
|
75 |
+
|
76 |
+
demo.launch(server_port=8080)
|