nanoGPT / app.py
HannahLin271's picture
Update app.py
7a33625 verified
import gradio as gr
from utils import init_model_from, respond
import tiktoken
# Configuration
max_new_tokens = 100
temperature = 0.5
top_k = 10
# Model information and links
model_info = {
"single_conversation_withGPTdata_bs256": {
'url': 'https://huggingface.co/HannahLin271/NanoGPT/resolve/main/singleConversation_withGPTdata_bs256.pt',
'description': " We trained this model on on Facebook Emotion Dialogues dataset with additional GPT data, using a batch size of 256.",
'logo': '๐Ÿงƒ'
},
"single_conversation_withGPTdata": {
'url': 'https://huggingface.co/HannahLin271/NanoGPT/resolve/main/singleConversation_withGPTdata_withoutemotion.pt',
'description': " We trained this model on Facebook Emotion Dialogues dataset with GPT data, excluding emotion and context tag, using a default batch size of 64.",
'logo': '๐Ÿง‰'
},
"single_conversation_withcontext": {
'url': 'https://huggingface.co/HannahLin271/NanoGPT/resolve/main/singleConversation_withcontext.pt',
'description': "Trained on Facebook Emotion Dialogues dataset with context included for improved conversational understanding, using a default batch size of 64.",
'logo': '๐Ÿน'
},
"single_conversation_withemotion": {
'url': 'https://huggingface.co/HannahLin271/NanoGPT/resolve/main/singleConversation_withemotion.pt',
'description': "Trained on Facebook Emotion Dialogues dataset, retaining emotion annotations for each conversation, using a default batch size of 64.",
'logo': '๐Ÿบ'
},
"single_conversation": {
'url': 'https://huggingface.co/HannahLin271/NanoGPT/resolve/main/singleConversation.pt',
'description': "Trained on Facebook Emotion Dialogues dataset, excluding emotion annotations for simpler conversations, using a default batch size of 64.",
'logo': '๐Ÿท'
},
"whole_conversation": {
'url': 'https://huggingface.co/HannahLin271/NanoGPT/resolve/main/wholeConversation.pt',
'description': "Trained on entire conversations from the Facebook Emotion Dialogues dataset, excluding tags other than <bot> and <human>,, using a default batch size of 64",
'logo': '๐Ÿต'
}
}
model_list = { }
model_choices = list(model_info.keys())
# init model for default selection
selected_model_name = "single_conversation_withGPTdata_bs256"
url = model_info[selected_model_name]['url']
model_list[selected_model_name] = init_model_from(url, selected_model_name)
# gpt-2 encodings
print("loading GPT-2 encodings...")
enc = tiktoken.get_encoding("gpt2")
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
decode = lambda l: enc.decode(l)
def predict(input_hints, input: str, history: list = None) -> tuple:
if history is None:
history = [] # Initialize history if not provided
# Generate a response using the respond function
print(f"selected_model_name: {selected_model_name}")
response_data = respond(
input=input,
samples=1,
model=model_list[selected_model_name],
encode=encode,
decode=decode,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
)
response = response_data[1]
full_output = response_data[2]
print(f"full_output: {full_output}")
history.append((input, response)) # Append the user input and bot response to history
return history, history, full_output # Return updated history twice (for chatbot and state)
def prepare_model(selected_model):
global selected_model_name
selected_model_name = selected_model
url = model_info[selected_model]['url']
if selected_model not in model_list:
model_list[selected_model] = init_model_from(url, selected_model)
logo = model_info[selected_model]['logo']
description = model_info[selected_model]['description']
return f"## {logo}Model Information\n<br>Model_name: {selected_model}\n<br>Description: {description}"
def update_chat_with_model_selection(model, chat_history):
# Add a message about the selected model
if chat_history is None:
chat_history = []
chat_history.append(
(None,
f'<span style="background-color: #FFD700; padding: 4px; border-radius: 4px;">Now you are chatting with <strong>{model}</strong></span>')
)
return chat_history
default_model_info = f"## ๐ŸญModel Information\n<br>Model_name: single_conversation_withGPTdata_bs256\n<br>Description: We trained this model on Facebook Emotion Dialogues dataset with additional GPT data, using a batch size of 256."
app = gr.Blocks()
full_output = " "
with app:
gr.Markdown("# ๐Ÿซ‚ Empathetic Dialogue System \n๐Ÿค—For the chatbot, we trained a small language model from scratch in our local machine. You can find the detailed information about our project in the Github repository [here](https://github.com/CallMeL/Project-ML).")
# Model Parameters interface
inp = gr.Dropdown(
choices=model_choices,
label="Select a Model",
info="Choose a pre-trained model to power the chatbot."
)
out = gr.Markdown(value=default_model_info)
inp.change(prepare_model, inp, out)
# Chatbot interface
chatbot = gr.Chatbot(
label="Chatbot Response",
avatar_images=(
None, # User avatar (None for default)
"https://em-content.zobj.net/source/twitter/376/hugging-face_1f917.png" # Assistant avatar
)
)
user_input = gr.Textbox(lines=2, placeholder="Enter your message here...", label="User Input")
state = gr.State([])
debug_result = gr.Textbox(label="Debug: Full model output",value=full_output)
input_hints = gr.Markdown("## ๐Ÿ“ Input Hints\n<br>1. Select a model from the dropdown list. \n<br> 2. Type your message in the text box, please try to input a complete sentence.\n<br> 3. Fill the [form](https://forms.office.com/e/PuTy4jrcQD) here to help us evaluate the model")
chat_interface = gr.Interface(
fn=predict,
inputs=[
input_hints,
user_input,
state, # Maintain conversation state
],
outputs=[
chatbot,
state,
debug_result
],
description="Your AI-based chatbot powered by selected models!"
)
inp.change(fn=update_chat_with_model_selection, inputs=[inp, state], outputs=[chatbot])
#TODO: add emotion/context here
if __name__ == "__main__":
app.launch(share=True)