HannahLin271 commited on
Commit
b24bee7
·
verified ·
1 Parent(s): 9c95e37

Create model.py

Browse files
Files changed (1) hide show
  1. model.py +390 -0
model.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Full definition of a GPT Language Model, all of it in this single file.
3
+ References:
4
+ 1) the official GPT-2 TensorFlow implementation released by OpenAI:
5
+ https://github.com/openai/gpt-2/blob/master/src/model.py
6
+ 2) huggingface/transformers PyTorch implementation:
7
+ https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
8
+ """
9
+
10
+ import math
11
+ import inspect
12
+ from dataclasses import dataclass
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ from torch.nn import functional as F
17
+
18
+ class LayerNorm(nn.Module):
19
+ """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
20
+
21
+ def __init__(self, ndim, bias):
22
+ super().__init__()
23
+ self.weight = nn.Parameter(torch.ones(ndim))
24
+ self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
25
+
26
+ def forward(self, input):
27
+ return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
28
+
29
+ class CausalSelfAttention(nn.Module):
30
+
31
+ def __init__(self, config):
32
+ super().__init__()
33
+ assert config.n_embd % config.n_head == 0
34
+ # key, query, value projections for all heads, but in a batch
35
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
36
+ # output projection
37
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
38
+ # regularization
39
+ self.attn_dropout = nn.Dropout(config.dropout)
40
+ self.resid_dropout = nn.Dropout(config.dropout)
41
+ self.n_head = config.n_head
42
+ self.n_embd = config.n_embd
43
+ self.dropout = config.dropout
44
+ # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
45
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
46
+ if not self.flash:
47
+ print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
48
+ # causal mask to ensure that attention is only applied to the left in the input sequence (torch.tril gives the lower triangular part of the matrix)
49
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
50
+ .view(1, 1, config.block_size, config.block_size))
51
+
52
+ def forward(self, x):
53
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
54
+
55
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
56
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
57
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
58
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
59
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
60
+
61
+ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
62
+ if self.flash:
63
+ # efficient attention using Flash Attention CUDA kernels
64
+ y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
65
+ else:
66
+ # manual implementation of attention
67
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
68
+ att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) # fill the upper triangle of the attention matrix with -inf
69
+ att = F.softmax(att, dim=-1)
70
+ att = self.attn_dropout(att)
71
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
72
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
73
+
74
+ # output projection
75
+ y = self.resid_dropout(self.c_proj(y))
76
+ return y
77
+
78
+ class MLP(nn.Module):
79
+
80
+ def __init__(self, config):
81
+ super().__init__()
82
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) # length = 4 * n_embd
83
+ self.gelu = nn.GELU()
84
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) # project the length back to n_embd
85
+ self.dropout = nn.Dropout(config.dropout)
86
+
87
+ def forward(self, x):
88
+ x = self.c_fc(x)
89
+ x = self.gelu(x)
90
+ x = self.c_proj(x)
91
+ x = self.dropout(x)
92
+ return x
93
+
94
+ class Block(nn.Module):
95
+
96
+ def __init__(self, config):
97
+ super().__init__()
98
+ self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
99
+ self.attn = CausalSelfAttention(config)
100
+ self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
101
+ self.mlp = MLP(config)
102
+
103
+ def forward(self, x):
104
+ x = x + self.attn(self.ln_1(x))
105
+ x = x + self.mlp(self.ln_2(x))
106
+ return x
107
+
108
+ @dataclass
109
+ class GPTConfig:
110
+ block_size: int = 1024
111
+ vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
112
+ n_layer: int = 12
113
+ n_head: int = 12
114
+ n_embd: int = 768
115
+ dropout: float = 0.0
116
+ bias: bool = False # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
117
+ pos_embd: str = 'default'
118
+ """
119
+ Improving positional Embeddings
120
+ 1. RoPE
121
+ 2. Relative
122
+ 3. Dynamic
123
+ """
124
+ ################################### 1. RoPE ###################################
125
+ class RotaryPositionalEmbedding(nn.Module):
126
+ def __init__(self, config):
127
+ super().__init__()
128
+ self.dim = config.n_embd
129
+ self.inv_freq = 1.0 / (10000 ** (torch.arange(0, self.dim, 2).float() / self.dim))
130
+
131
+ def forward(self, seq_len, device):
132
+ pos = torch.arange(seq_len, dtype=torch.float, device=device) # Ensure pos is on the correct device
133
+ sinusoid_inp = torch.einsum("i,j->ij", pos, self.inv_freq.to(device)) # Move self.inv_freq to the same device
134
+ emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
135
+ return emb
136
+
137
+ @staticmethod
138
+ def apply_rotary_embedding(x, rope):
139
+ # Ensure all tensors are on the same device
140
+ device = x.device
141
+ rope = rope.to(device)
142
+
143
+ # x: shape (batch, seq_len, dim)
144
+ # rope: shape (seq_len, dim)
145
+ dim = rope.size(-1)
146
+ x1, x2 = x[..., :dim // 2], x[..., dim // 2:]
147
+ rope1, rope2 = rope[..., :dim // 2], rope[..., dim // 2:]
148
+ return torch.cat([x1 * rope1 - x2 * rope2, x1 * rope2 + x2 * rope1], dim=-1)
149
+
150
+
151
+ # MARK: - GPT Model
152
+ class GPT(nn.Module):
153
+
154
+ def __init__(self, config):
155
+ super().__init__()
156
+ assert config.vocab_size is not None
157
+ assert config.block_size is not None
158
+ self.config = config
159
+
160
+ self.transformer = nn.ModuleDict(dict(
161
+ wte = nn.Embedding(config.vocab_size, config.n_embd), # token embedding
162
+ wpe = nn.Embedding(config.block_size, config.n_embd), # positional embedding
163
+ rope = RotaryPositionalEmbedding(config), # improving PE: 1. RoPE
164
+ drop = nn.Dropout(config.dropout), # dropout layer
165
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # the transformer
166
+ ln_f = LayerNorm(config.n_embd, bias=config.bias), # layer norm at the output of the model
167
+ ))
168
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
169
+ # with weight tying when using torch.compile() some warnings get generated:
170
+ # "UserWarning: functional_call was passed multiple values for tied weights.
171
+ # This behavior is deprecated and will be an error in future versions"
172
+ # not 100% sure what this is, so far seems to be harmless. TODO investigate
173
+ self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
174
+
175
+ # init all weights
176
+ self.apply(self._init_weights)
177
+ # apply special scaled init to the residual projections, per GPT-2 paper
178
+ for pn, p in self.named_parameters():
179
+ if pn.endswith('c_proj.weight'):
180
+ torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
181
+
182
+ # report number of parameters
183
+ print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
184
+
185
+ def get_num_params(self, non_embedding=True):
186
+ """
187
+ Return the number of parameters in the model.
188
+ For non-embedding count (default), the position embeddings get subtracted.
189
+ The token embeddings would too, except due to the parameter sharing these
190
+ params are actually used as weights in the final layer, so we include them.
191
+ """
192
+ n_params = sum(p.numel() for p in self.parameters())
193
+ if non_embedding:
194
+ n_params -= self.transformer.wpe.weight.numel()
195
+ return n_params
196
+
197
+ def _init_weights(self, module):
198
+ if isinstance(module, nn.Linear):
199
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
200
+ if module.bias is not None:
201
+ torch.nn.init.zeros_(module.bias)
202
+ elif isinstance(module, nn.Embedding):
203
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
204
+
205
+ def forward(self, idx, targets=None):
206
+ device = idx.device
207
+ b, t = idx.size()
208
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
209
+ pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
210
+
211
+ # forward the GPT model itself
212
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
213
+
214
+ '''POSITIONAL EMBEDDING'''
215
+ if self.config.pos_embd == 'default':
216
+ # 0. Default NanoGPT
217
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
218
+ x = self.transformer.drop(tok_emb + pos_emb)
219
+ elif self.config.pos_embd == 'rope':
220
+ # 1. RoPE
221
+ rope = self.transformer.rope.forward(t, device=device) # (t, n_embd)
222
+ pos_emb = rope.unsqueeze(0).expand(b, -1, -1) # (b, t, n_embd)
223
+ x = RotaryPositionalEmbedding.apply_rotary_embedding(tok_emb, pos_emb)
224
+ else:
225
+ raise ValueError(f"Unknown positional embedding type: {self.config.pos_embedding_type}")
226
+
227
+ ################################### 0. Default of Nano GPT ###################################
228
+ # pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
229
+ ##TODO: the embedding here is simple, just sum them up, could improve with more sophisticated tokenization
230
+ # x = self.transformer.drop(tok_emb + pos_emb)
231
+
232
+ # ################################### 1. RoPE ###################################
233
+ # rope = self.transformer.rope.forward(t, device=device) # (t, n_embd)
234
+ # pos_emb = rope.unsqueeze(0).expand(b, -1, -1) # (b, t, n_embd)
235
+ # x = RotaryPositionalEmbedding.apply_rotary_embedding(tok_emb, pos_emb)
236
+
237
+ #########################################################################################################
238
+
239
+ for block in self.transformer.h:
240
+ x = block(x)
241
+ x = self.transformer.ln_f(x)
242
+
243
+ if targets is not None:
244
+ # if we are given some desired targets also calculate the loss
245
+ logits = self.lm_head(x) # B, T, C = logits.shape
246
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
247
+ else:
248
+ # inference-time mini-optimization: only forward the lm_head on the very last position
249
+ logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
250
+ loss = None
251
+
252
+ return logits, loss
253
+
254
+ def crop_block_size(self, block_size):
255
+ # model surgery to decrease the block size if necessary
256
+ # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
257
+ # but want to use a smaller block size for some smaller, simpler model
258
+ assert block_size <= self.config.block_size
259
+ self.config.block_size = block_size
260
+ self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
261
+ for block in self.transformer.h:
262
+ if hasattr(block.attn, 'bias'):
263
+ block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
264
+
265
+ @classmethod
266
+ def from_pretrained(cls, model_type, override_args=None):
267
+ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
268
+ override_args = override_args or {} # default to empty dict
269
+ # only dropout can be overridden see more notes below
270
+ assert all(k == 'dropout' for k in override_args)
271
+ from transformers import GPT2LMHeadModel
272
+ print("loading weights from pretrained gpt: %s" % model_type)
273
+
274
+ # n_layer, n_head and n_embd are determined from model_type
275
+ config_args = {
276
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
277
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
278
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
279
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
280
+ }[model_type]
281
+ print("forcing vocab_size=50257, block_size=1024, bias=True")
282
+ config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
283
+ config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
284
+ config_args['bias'] = True # always True for GPT model checkpoints
285
+ # we can override the dropout rate, if desired
286
+ if 'dropout' in override_args:
287
+ print(f"overriding dropout rate to {override_args['dropout']}")
288
+ config_args['dropout'] = override_args['dropout']
289
+ # create a from-scratch initialized minGPT model
290
+ config = GPTConfig(**config_args)
291
+ model = GPT(config)
292
+ sd = model.state_dict()
293
+ sd_keys = sd.keys()
294
+ sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
295
+
296
+ # init a huggingface/transformers model
297
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
298
+ sd_hf = model_hf.state_dict()
299
+
300
+ # copy while ensuring all of the parameters are aligned and match in names and shapes
301
+ sd_keys_hf = sd_hf.keys()
302
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
303
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
304
+ transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
305
+ # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
306
+ # this means that we have to transpose these weights when we import them
307
+ assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
308
+ for k in sd_keys_hf:
309
+ if any(k.endswith(w) for w in transposed):
310
+ # special treatment for the Conv1D weights we need to transpose
311
+ assert sd_hf[k].shape[::-1] == sd[k].shape
312
+ with torch.no_grad():
313
+ sd[k].copy_(sd_hf[k].t())
314
+ else:
315
+ # vanilla copy over the other parameters
316
+ assert sd_hf[k].shape == sd[k].shape
317
+ with torch.no_grad():
318
+ sd[k].copy_(sd_hf[k])
319
+
320
+ return model
321
+
322
+ def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
323
+ # start with all of the candidate parameters
324
+ param_dict = {pn: p for pn, p in self.named_parameters()}
325
+ # filter out those that do not require grad
326
+ param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
327
+ # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
328
+ # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
329
+ decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
330
+ nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
331
+ optim_groups = [
332
+ {'params': decay_params, 'weight_decay': weight_decay},
333
+ {'params': nodecay_params, 'weight_decay': 0.0}
334
+ ]
335
+ num_decay_params = sum(p.numel() for p in decay_params)
336
+ num_nodecay_params = sum(p.numel() for p in nodecay_params)
337
+ print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
338
+ print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
339
+ # Create AdamW optimizer and use the fused version if it is available
340
+ fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
341
+ use_fused = fused_available and device_type == 'cuda'
342
+ extra_args = dict(fused=True) if use_fused else dict()
343
+ optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
344
+ print(f"using fused AdamW: {use_fused}")
345
+
346
+ return optimizer
347
+
348
+ def estimate_mfu(self, fwdbwd_per_iter, dt):
349
+ """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
350
+ # first estimate the number of flops we do per iteration.
351
+ # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
352
+ N = self.get_num_params()
353
+ cfg = self.config
354
+ L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
355
+ flops_per_token = 6*N + 12*L*H*Q*T
356
+ flops_per_fwdbwd = flops_per_token * T
357
+ flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
358
+ # express our flops throughput as ratio of A100 bfloat16 peak flops
359
+ flops_achieved = flops_per_iter * (1.0/dt) # per second
360
+ flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
361
+ mfu = flops_achieved / flops_promised
362
+ return mfu
363
+
364
+ @torch.no_grad()
365
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
366
+ # idx is (B,T) array of indices in the current context
367
+ """
368
+ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
369
+ the sequence max_new_tokens times, feeding the predictions back into the model each time.
370
+ Most likely you'll want to make sure to be in model.eval() mode of operation for this.
371
+ """
372
+ for _ in range(max_new_tokens):
373
+ # if the sequence context is growing too long we must crop it at block_size
374
+ idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
375
+ # forward the model to get the logits for the index in the sequence
376
+ logits, _ = self(idx_cond)
377
+ # pluck the logits at the final step and scale by desired temperature
378
+ logits = logits[:, -1, :] / temperature
379
+ # optionally crop the logits to only the top k options
380
+ if top_k is not None:
381
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
382
+ logits[logits < v[:, [-1]]] = -float('Inf')
383
+ # apply softmax to convert logits to (normalized) probabilities
384
+ probs = F.softmax(logits, dim=-1)
385
+ # sample from the distribution
386
+ idx_next = torch.multinomial(probs, num_samples=1)
387
+ # append sampled index to the running sequence and continue
388
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
389
+
390
+ return idx