Spaces:
Sleeping
Sleeping
# Importing necessary libraries | |
import tensorflow as tf | |
from tensorflow.keras import layers, models, datasets | |
import numpy as np | |
# Load the MNIST dataset | |
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() | |
# Normalize pixel values to be between 0 and 1 | |
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255 | |
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255 | |
# Convert labels to categorical one-hot encoding | |
train_labels = tf.keras.utils.to_categorical(train_labels, 10) | |
test_labels = tf.keras.utils.to_categorical(test_labels, 10) | |
# Define the CNN model | |
def create_cnn_model(input_shape, num_classes): | |
model = models.Sequential() | |
# Convolutional layers | |
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) | |
model.add(layers.MaxPooling2D((2, 2))) | |
model.add(layers.Conv2D(64, (3, 3), activation='relu')) | |
model.add(layers.MaxPooling2D((2, 2))) | |
model.add(layers.Conv2D(64, (3, 3), activation='relu')) | |
# Flatten layer to transition from convolutional layers to fully connected layers | |
model.add(layers.Flatten()) | |
# Dense (fully connected) layers | |
model.add(layers.Dense(64, activation='relu')) | |
model.add(layers.Dense(num_classes, activation='softmax')) # Output layer with softmax activation for multiclass classification | |
return model | |
# Define input shape and number of classes | |
input_shape = (28, 28, 1) # Input shape for MNIST images | |
num_classes = 10 # Number of classes for digit classification (0-9) | |
# Create an instance of the model | |
model = create_cnn_model(input_shape, num_classes) | |
# Print model summary | |
model.summary() | |
# Compile the model | |
model.compile(optimizer='adam', | |
loss='categorical_crossentropy', | |
metrics=['accuracy']) | |
# Train the model | |
model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels)) | |
# Save the trained model to disk | |
model.save("mnist_cnn_model.h5") | |
print("Model saved to disk.") | |
# Load the saved model | |
loaded_model = models.load_model("mnist_cnn_model.h5") | |
print("Model loaded from disk.") | |
# Evaluate the loaded model | |
test_loss, test_accuracy = loaded_model.evaluate(test_images, test_labels) | |
print(f"Test Accuracy: {test_accuracy}") |