Spaces:
Runtime error
Runtime error
initial cmomit
Browse files- trainer.py +1531 -0
trainer.py
ADDED
@@ -0,0 +1,1531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
Train a network across multiple GPUs.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import contextlib
|
11 |
+
import logging
|
12 |
+
import sys
|
13 |
+
import time
|
14 |
+
from argparse import Namespace
|
15 |
+
from itertools import chain
|
16 |
+
from typing import Any, Dict, List
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from fairseq import models, optim, utils
|
20 |
+
from fairseq.dataclass.configs import FairseqConfig
|
21 |
+
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
|
22 |
+
from fairseq.distributed import utils as distributed_utils
|
23 |
+
from fairseq.file_io import PathManager
|
24 |
+
from fairseq.logging import meters, metrics
|
25 |
+
from fairseq.models.ema import build_ema
|
26 |
+
from fairseq.nan_detector import NanDetector
|
27 |
+
from fairseq.optim import lr_scheduler
|
28 |
+
from omegaconf import OmegaConf
|
29 |
+
|
30 |
+
from utils import checkpoint_utils
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class Trainer(object):
|
36 |
+
"""Main class for data parallel training.
|
37 |
+
|
38 |
+
This class supports synchronous distributed data parallel training,
|
39 |
+
where multiple workers each have a full model replica and gradients
|
40 |
+
are accumulated across workers before each update. We use
|
41 |
+
:class:`~torch.nn.parallel.DistributedDataParallel` to handle
|
42 |
+
communication of the gradients across workers.
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, cfg: FairseqConfig, task, model, criterion, quantizer=None):
|
46 |
+
|
47 |
+
if isinstance(cfg, Namespace):
|
48 |
+
logger.warning(
|
49 |
+
"argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf"
|
50 |
+
)
|
51 |
+
cfg = convert_namespace_to_omegaconf(cfg)
|
52 |
+
|
53 |
+
self.cfg = cfg
|
54 |
+
self.task = task
|
55 |
+
|
56 |
+
# catalog shared parameters
|
57 |
+
shared_params = _catalog_shared_params(model)
|
58 |
+
self.tpu = cfg.common.tpu
|
59 |
+
self.cuda = torch.cuda.is_available() and not cfg.common.cpu and not self.tpu
|
60 |
+
if self.cuda:
|
61 |
+
self.device = torch.device("cuda")
|
62 |
+
elif self.tpu:
|
63 |
+
self.device = utils.get_tpu_device()
|
64 |
+
else:
|
65 |
+
self.device = torch.device("cpu")
|
66 |
+
|
67 |
+
if self.is_fsdp:
|
68 |
+
import fairscale
|
69 |
+
if self.cfg.common.bf16:
|
70 |
+
raise ValueError(
|
71 |
+
"FullyShardedDataParallel is not compatible with --bf16 or "
|
72 |
+
"--memory-efficient-bf16"
|
73 |
+
)
|
74 |
+
if self.cfg.distributed_training.zero_sharding != "none":
|
75 |
+
raise ValueError(
|
76 |
+
"FullyShardedDataParallel is not compatible with --zero-sharding "
|
77 |
+
"option (it's already built in)"
|
78 |
+
)
|
79 |
+
if max(self.cfg.optimization.update_freq) > 1 and fairscale.__version__ < "0.4.0":
|
80 |
+
raise RuntimeError(
|
81 |
+
"Please update to fairscale 0.4.0 or newer when combining "
|
82 |
+
"--update-freq with FullyShardedDataParallel"
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
if (
|
86 |
+
hasattr(self.cfg.distributed_training, "cpu_offload")
|
87 |
+
and self.cfg.distributed_training.cpu_offload
|
88 |
+
):
|
89 |
+
raise ValueError("--cpu-offload requires --ddp-backend=fully_sharded")
|
90 |
+
|
91 |
+
# copy model and criterion to current device/dtype
|
92 |
+
self._criterion = criterion
|
93 |
+
self._model = model
|
94 |
+
if not self.is_fsdp:
|
95 |
+
if cfg.common.fp16:
|
96 |
+
assert not cfg.common.amp, "Cannot use fp16 and AMP together"
|
97 |
+
self._criterion = self._criterion.half()
|
98 |
+
self._model = self._model.half()
|
99 |
+
elif cfg.common.bf16:
|
100 |
+
self._criterion = self._criterion.to(dtype=torch.bfloat16)
|
101 |
+
self._model = self._model.to(dtype=torch.bfloat16)
|
102 |
+
elif cfg.common.amp:
|
103 |
+
self._amp_retries = 0
|
104 |
+
if (
|
105 |
+
not cfg.distributed_training.pipeline_model_parallel
|
106 |
+
# the DistributedFairseqModel wrapper will handle moving to device,
|
107 |
+
# so only handle cases which don't use the wrapper
|
108 |
+
and not self.use_distributed_wrapper
|
109 |
+
):
|
110 |
+
self._criterion = self._criterion.to(device=self.device)
|
111 |
+
self._model = self._model.to(device=self.device)
|
112 |
+
self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel
|
113 |
+
self.last_device = None
|
114 |
+
if self.cuda and self.pipeline_model_parallel:
|
115 |
+
self.last_device = torch.device(
|
116 |
+
cfg.distributed_training.pipeline_devices[-1]
|
117 |
+
)
|
118 |
+
|
119 |
+
# check that shared parameters are preserved after device transfer
|
120 |
+
for shared_param in shared_params:
|
121 |
+
ref = _get_module_by_path(self._model, shared_param[0])
|
122 |
+
for path in shared_param[1:]:
|
123 |
+
logger.info(
|
124 |
+
"detected shared parameter: {} <- {}".format(shared_param[0], path)
|
125 |
+
)
|
126 |
+
_set_module_by_path(self._model, path, ref)
|
127 |
+
|
128 |
+
self._dummy_batch = None # indicates we don't have a dummy batch at first
|
129 |
+
self._lr_scheduler = None
|
130 |
+
self._num_updates = 0
|
131 |
+
self._num_xla_compiles = 0 # for TPUs
|
132 |
+
self._optim_history = None
|
133 |
+
self._optimizer = None
|
134 |
+
self._warn_once = set()
|
135 |
+
self._wrapped_criterion = None
|
136 |
+
self._wrapped_model = None
|
137 |
+
self._ema = None
|
138 |
+
|
139 |
+
# TODO(myleott): support tpu
|
140 |
+
if self.cuda and self.data_parallel_world_size > 1:
|
141 |
+
self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size)
|
142 |
+
else:
|
143 |
+
self._grad_norm_buf = None
|
144 |
+
|
145 |
+
self.quantizer = quantizer
|
146 |
+
if self.quantizer is not None:
|
147 |
+
self.quantizer.set_trainer(self)
|
148 |
+
|
149 |
+
# get detailed cuda environment
|
150 |
+
if self.cuda:
|
151 |
+
self.cuda_env = utils.CudaEnvironment()
|
152 |
+
if self.data_parallel_world_size > 1:
|
153 |
+
self.cuda_env_arr = distributed_utils.all_gather_list(
|
154 |
+
self.cuda_env, group=distributed_utils.get_global_group()
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
self.cuda_env_arr = [self.cuda_env]
|
158 |
+
if self.data_parallel_rank == 0:
|
159 |
+
utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr)
|
160 |
+
else:
|
161 |
+
self.cuda_env = None
|
162 |
+
self.cuda_env_arr = None
|
163 |
+
|
164 |
+
metrics.log_start_time("wall", priority=790, round=0)
|
165 |
+
|
166 |
+
self._start_time = time.time()
|
167 |
+
self._previous_training_time = 0
|
168 |
+
self._cumulative_training_time = None
|
169 |
+
|
170 |
+
def reinitialize(self):
|
171 |
+
"""Reinitialize the Trainer, typically after model params change."""
|
172 |
+
self._lr_scheduler = None
|
173 |
+
self._optimizer = None
|
174 |
+
self._wrapped_criterion = None
|
175 |
+
self._wrapped_model = None
|
176 |
+
|
177 |
+
@property
|
178 |
+
def data_parallel_world_size(self):
|
179 |
+
if self.cfg.distributed_training.distributed_world_size == 1:
|
180 |
+
return 1
|
181 |
+
return distributed_utils.get_data_parallel_world_size()
|
182 |
+
|
183 |
+
@property
|
184 |
+
def data_parallel_process_group(self):
|
185 |
+
return distributed_utils.get_data_parallel_group()
|
186 |
+
|
187 |
+
@property
|
188 |
+
def data_parallel_rank(self):
|
189 |
+
if self.cfg.distributed_training.distributed_world_size == 1:
|
190 |
+
return 0
|
191 |
+
return distributed_utils.get_data_parallel_rank()
|
192 |
+
|
193 |
+
@property
|
194 |
+
def is_data_parallel_master(self):
|
195 |
+
# NOTE: this returns true for all model parallel replicas with data
|
196 |
+
# parallel rank 0
|
197 |
+
return self.data_parallel_rank == 0
|
198 |
+
|
199 |
+
@property
|
200 |
+
def use_distributed_wrapper(self) -> bool:
|
201 |
+
return (
|
202 |
+
self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf
|
203 |
+
) or (
|
204 |
+
self.is_fsdp and self.cfg.distributed_training.cpu_offload
|
205 |
+
)
|
206 |
+
|
207 |
+
@property
|
208 |
+
def should_save_checkpoint_on_current_rank(self) -> bool:
|
209 |
+
"""Indicates whether to save checkpoints on the current DDP rank."""
|
210 |
+
if (
|
211 |
+
self.is_fsdp and self.cfg.distributed_training.use_sharded_state
|
212 |
+
) or getattr(self.cfg.model, "base_layers", 0) > 0:
|
213 |
+
return True
|
214 |
+
else:
|
215 |
+
return self.is_data_parallel_master
|
216 |
+
|
217 |
+
@property
|
218 |
+
def always_call_state_dict_during_save_checkpoint(self) -> bool:
|
219 |
+
if self.is_fsdp and not self.cfg.distributed_training.use_sharded_state:
|
220 |
+
# FSDP calls communication collective when consolidating checkpoints
|
221 |
+
return True
|
222 |
+
else:
|
223 |
+
return False
|
224 |
+
|
225 |
+
@property
|
226 |
+
def checkpoint_suffix(self) -> str:
|
227 |
+
"""Suffix to add to the checkpoint file name."""
|
228 |
+
if self.is_fsdp and self.cfg.distributed_training.use_sharded_state:
|
229 |
+
return self.cfg.checkpoint.checkpoint_suffix + "-shard{0}".format(
|
230 |
+
self.data_parallel_rank
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
return self.cfg.checkpoint.checkpoint_suffix or ""
|
234 |
+
|
235 |
+
@property
|
236 |
+
def criterion(self):
|
237 |
+
if self._wrapped_criterion is None:
|
238 |
+
if utils.has_parameters(self._criterion) and self.use_distributed_wrapper:
|
239 |
+
self._wrapped_criterion = models.DistributedFairseqModel(
|
240 |
+
self.cfg.distributed_training,
|
241 |
+
self._criterion,
|
242 |
+
process_group=self.data_parallel_process_group,
|
243 |
+
device=self.device,
|
244 |
+
)
|
245 |
+
else:
|
246 |
+
self._wrapped_criterion = self._criterion
|
247 |
+
return self._wrapped_criterion
|
248 |
+
|
249 |
+
@property
|
250 |
+
def model(self):
|
251 |
+
if self._wrapped_model is None:
|
252 |
+
if self.use_distributed_wrapper:
|
253 |
+
self._wrapped_model = models.DistributedFairseqModel(
|
254 |
+
self.cfg.distributed_training,
|
255 |
+
self._model,
|
256 |
+
process_group=self.data_parallel_process_group,
|
257 |
+
device=self.device,
|
258 |
+
)
|
259 |
+
else:
|
260 |
+
self._wrapped_model = self._model
|
261 |
+
return self._wrapped_model
|
262 |
+
|
263 |
+
@property
|
264 |
+
def ema(self):
|
265 |
+
if self._ema is None:
|
266 |
+
self._build_ema()
|
267 |
+
return self._ema
|
268 |
+
|
269 |
+
def _build_ema(self):
|
270 |
+
if self.cfg.ema.store_ema:
|
271 |
+
self._ema = build_ema(self._model, self.cfg.ema, self.device)
|
272 |
+
logger.info(
|
273 |
+
"Exponential Moving Average Shadow Model is initialized."
|
274 |
+
)
|
275 |
+
|
276 |
+
@property
|
277 |
+
def optimizer(self):
|
278 |
+
if self._optimizer is None:
|
279 |
+
self._build_optimizer()
|
280 |
+
return self._optimizer
|
281 |
+
|
282 |
+
@property
|
283 |
+
def lr_scheduler(self):
|
284 |
+
if self._lr_scheduler is None:
|
285 |
+
self._build_optimizer() # this will initialize self._lr_scheduler
|
286 |
+
return self._lr_scheduler
|
287 |
+
|
288 |
+
def _build_optimizer(self):
|
289 |
+
params = list(
|
290 |
+
filter(
|
291 |
+
lambda p: p.requires_grad,
|
292 |
+
chain(self.model.parameters(), self.criterion.parameters()),
|
293 |
+
)
|
294 |
+
)
|
295 |
+
|
296 |
+
if self.is_fsdp and self.cfg.common.fp16:
|
297 |
+
# FullyShardedDataParallel always uses MemoryEfficientFP16 wrapper,
|
298 |
+
# mostly for the grad scaling. But if we don't have the
|
299 |
+
# --memory-efficient-fp16 flag set, then we're effectively doing
|
300 |
+
# regular --fp16 and can allow the use of optimizers that would
|
301 |
+
# otherwise be unsupported by MemoryEfficientFP16Optimizer.
|
302 |
+
allow_unsupported = not self.cfg.common.memory_efficient_fp16
|
303 |
+
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
|
304 |
+
self.cfg, params, allow_unsupported=allow_unsupported
|
305 |
+
)
|
306 |
+
elif self.cfg.common.fp16 or self.cfg.common.bf16 or self.cfg.common.amp:
|
307 |
+
if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
|
308 |
+
logger.info(
|
309 |
+
"NOTE: your device does NOT support faster training with --fp16 or --amp, "
|
310 |
+
"please switch to FP32 which is likely to be faster"
|
311 |
+
)
|
312 |
+
if (
|
313 |
+
self.cfg.common.memory_efficient_fp16
|
314 |
+
or self.cfg.common.memory_efficient_bf16
|
315 |
+
):
|
316 |
+
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
|
317 |
+
self.cfg, params
|
318 |
+
)
|
319 |
+
elif self.cfg.common.amp:
|
320 |
+
self._optimizer = optim.AMPOptimizer.build_optimizer(self.cfg, params)
|
321 |
+
else:
|
322 |
+
self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params)
|
323 |
+
else:
|
324 |
+
if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
|
325 |
+
logger.info("NOTE: your device may support faster training with --fp16 or --amp")
|
326 |
+
self._optimizer = optim.build_optimizer(self.cfg.optimizer, params)
|
327 |
+
|
328 |
+
if self.is_fsdp:
|
329 |
+
assert (
|
330 |
+
not self.cfg.optimization.use_bmuf
|
331 |
+
), "--ddp-backend=fully_sharded is not compatible with BMUF"
|
332 |
+
assert self._optimizer.supports_flat_params, (
|
333 |
+
"--ddp-backend=fully_sharded is only compatible with pointwise "
|
334 |
+
"optimizers (e.g., Adam, AdamW, Adadelta, Adamax, SGD, etc.). "
|
335 |
+
"However, the sharding will result in slightly different results when "
|
336 |
+
"using non-pointwise optimizers (e.g., Adagrad, Adafactor, LAMB)"
|
337 |
+
)
|
338 |
+
|
339 |
+
if self.cfg.optimization.use_bmuf:
|
340 |
+
self._optimizer = optim.FairseqBMUF(
|
341 |
+
self.cfg.bmuf,
|
342 |
+
self._optimizer,
|
343 |
+
)
|
344 |
+
|
345 |
+
if self.cfg.distributed_training.zero_sharding == "os":
|
346 |
+
if (
|
347 |
+
self.cfg.common.fp16
|
348 |
+
and not self.cfg.common.memory_efficient_fp16
|
349 |
+
and not self.cfg.common.memory_efficient_bf16
|
350 |
+
) and not self.cfg.common.fp16_no_flatten_grads:
|
351 |
+
raise ValueError(
|
352 |
+
"ZeRO is incomptabile with fp16 and flattened grads. "
|
353 |
+
"Please use --fp16-no-flatten-grads"
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
optim.shard_(self._optimizer, self.data_parallel_process_group)
|
357 |
+
|
358 |
+
# We should initialize the learning rate scheduler immediately after
|
359 |
+
# building the optimizer, so that the initial learning rate is set.
|
360 |
+
self._lr_scheduler = lr_scheduler.build_lr_scheduler(
|
361 |
+
self.cfg.lr_scheduler,
|
362 |
+
self.optimizer,
|
363 |
+
)
|
364 |
+
self._lr_scheduler.step_update(0)
|
365 |
+
|
366 |
+
@property
|
367 |
+
def is_fsdp(self):
|
368 |
+
return self.cfg.distributed_training.ddp_backend == "fully_sharded"
|
369 |
+
|
370 |
+
def consolidate_optimizer(self):
|
371 |
+
"""For OSS, we need to consolidate the state dict."""
|
372 |
+
if self.cfg.checkpoint.no_save_optimizer_state:
|
373 |
+
return
|
374 |
+
self._gathered_optim_state = None
|
375 |
+
if hasattr(self.optimizer.optimizer, "consolidate_state_dict"):
|
376 |
+
self.optimizer.optimizer.consolidate_state_dict()
|
377 |
+
elif self.is_fsdp and not self.model.use_sharded_state:
|
378 |
+
st = self.model.gather_full_optim_state_dict(
|
379 |
+
self.optimizer
|
380 |
+
) # only returns on rank 0
|
381 |
+
self._gathered_optim_state = st
|
382 |
+
|
383 |
+
def state_dict(self):
|
384 |
+
state_dict = {
|
385 |
+
"args": None, # legacy
|
386 |
+
"cfg": (
|
387 |
+
OmegaConf.to_container(self.cfg, resolve=True, enum_to_str=True)
|
388 |
+
if OmegaConf.is_config(self.cfg)
|
389 |
+
else self.cfg
|
390 |
+
),
|
391 |
+
"model": self.model.state_dict(),
|
392 |
+
"criterion": (
|
393 |
+
self.criterion.state_dict()
|
394 |
+
if utils.has_parameters(self.criterion)
|
395 |
+
else None
|
396 |
+
),
|
397 |
+
"optimizer_history": (self._optim_history or [])
|
398 |
+
+ [
|
399 |
+
{
|
400 |
+
"criterion_name": self.get_criterion().__class__.__name__,
|
401 |
+
"optimizer_name": self.optimizer.__class__.__name__,
|
402 |
+
"lr_scheduler_state": self.lr_scheduler.state_dict(),
|
403 |
+
"num_updates": self.get_num_updates(),
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"task_state": self.task.state_dict() if self.task is not None else {},
|
407 |
+
"extra_state": {
|
408 |
+
"metrics": metrics.state_dict(),
|
409 |
+
"previous_training_time": self.cumulative_training_time(),
|
410 |
+
},
|
411 |
+
}
|
412 |
+
if self.cfg.ema.store_ema:
|
413 |
+
# Save EMA model state as extra state
|
414 |
+
state_dict["extra_state"]["ema"] = self.ema.get_model().state_dict()
|
415 |
+
if self.cfg.ema.ema_fp32:
|
416 |
+
# Save EMA params in fp32
|
417 |
+
state_dict["extra_state"]["ema_fp32_params"] = self.ema.fp32_params
|
418 |
+
if not self.cfg.checkpoint.no_save_optimizer_state:
|
419 |
+
if self._gathered_optim_state is not None:
|
420 |
+
state_dict["last_optimizer_state"] = self._gathered_optim_state
|
421 |
+
self._gathered_optim_state = None
|
422 |
+
else:
|
423 |
+
state_dict["last_optimizer_state"] = self.optimizer.state_dict()
|
424 |
+
if self.is_fsdp:
|
425 |
+
# save meta data for recombining checkpoint upon loading
|
426 |
+
state_dict["fsdp_metadata"] = self.model.local_metadata_dict()
|
427 |
+
return state_dict
|
428 |
+
|
429 |
+
def save_checkpoint(self, filename, extra_state):
|
430 |
+
"""Save all training state in a checkpoint file."""
|
431 |
+
logger.info(f"Saving checkpoint to {filename}")
|
432 |
+
# call state_dict on all ranks in case it needs internal communication
|
433 |
+
state_dict = utils.move_to_cpu(self.state_dict())
|
434 |
+
state_dict["extra_state"].update(extra_state)
|
435 |
+
if self.should_save_checkpoint_on_current_rank:
|
436 |
+
checkpoint_utils.torch_persistent_save(
|
437 |
+
state_dict,
|
438 |
+
filename,
|
439 |
+
async_write=self.cfg.checkpoint.write_checkpoints_asynchronously,
|
440 |
+
)
|
441 |
+
logger.info(f"Finished saving checkpoint to {filename}")
|
442 |
+
|
443 |
+
def load_checkpoint(
|
444 |
+
self,
|
445 |
+
filename,
|
446 |
+
reset_optimizer=False,
|
447 |
+
reset_lr_scheduler=False,
|
448 |
+
optimizer_overrides=None,
|
449 |
+
reset_meters=False,
|
450 |
+
):
|
451 |
+
"""
|
452 |
+
Load all training state from a checkpoint file.
|
453 |
+
rank = 0 will load the checkpoint, and then broadcast it to all
|
454 |
+
other ranks.
|
455 |
+
"""
|
456 |
+
extra_state, self._optim_history, last_optim_state = None, [], None
|
457 |
+
|
458 |
+
logger.info(f"Preparing to load checkpoint {filename}")
|
459 |
+
is_distributed = self.data_parallel_world_size > 1
|
460 |
+
bexists = PathManager.isfile(filename)
|
461 |
+
if bexists:
|
462 |
+
load_on_all_ranks = (
|
463 |
+
self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks
|
464 |
+
# TPUs don't support broadcast yet, so load checkpoints
|
465 |
+
# on every worker for now
|
466 |
+
or self.tpu
|
467 |
+
# FSDP requires loading checkpoint shards on all ranks
|
468 |
+
or (self.is_fsdp and self.cfg.distributed_training.use_sharded_state)
|
469 |
+
or getattr(self.cfg.model, "base_layers", 0) > 0
|
470 |
+
)
|
471 |
+
|
472 |
+
if load_on_all_ranks or self.data_parallel_rank == 0:
|
473 |
+
state = checkpoint_utils.load_checkpoint_to_cpu(
|
474 |
+
filename, load_on_all_ranks=load_on_all_ranks
|
475 |
+
)
|
476 |
+
last_optim_state = state.get("last_optimizer_state", None)
|
477 |
+
|
478 |
+
# If doing zero_sharding, do not broadcast global optimizer
|
479 |
+
# state. Later we will broadcast sharded states to each rank
|
480 |
+
# to avoid memory from exploding.
|
481 |
+
if (
|
482 |
+
not load_on_all_ranks
|
483 |
+
and self.cfg.distributed_training.zero_sharding == "os"
|
484 |
+
and "last_optimizer_state" in state
|
485 |
+
and is_distributed
|
486 |
+
):
|
487 |
+
state["last_optimizer_state"] = "SHARDED"
|
488 |
+
else:
|
489 |
+
last_optim_state = None
|
490 |
+
state = None
|
491 |
+
|
492 |
+
if is_distributed and not load_on_all_ranks:
|
493 |
+
state = distributed_utils.broadcast_object(
|
494 |
+
state,
|
495 |
+
src_rank=0,
|
496 |
+
group=self.data_parallel_process_group,
|
497 |
+
dist_device=self.device,
|
498 |
+
)
|
499 |
+
if self.data_parallel_rank > 0:
|
500 |
+
last_optim_state = state.get("last_optimizer_state", None)
|
501 |
+
|
502 |
+
# load model parameters
|
503 |
+
try:
|
504 |
+
if self.cfg.checkpoint.use_ema_weights_to_init_param and "extra_state" in state and "ema" in state["extra_state"]:
|
505 |
+
logger.info("use_ema_weights_to_init_param = True, will use EMA weights in the ckpt to init the model param...")
|
506 |
+
ema_state_dict = state["extra_state"]["ema_fp32_params"] if "ema_fp32_params" in state["extra_state"] else state["extra_state"]["ema"]
|
507 |
+
self.model.load_state_dict(
|
508 |
+
ema_state_dict, strict=True, model_cfg=self.cfg.model
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
self.model.load_state_dict(
|
512 |
+
state["model"], strict=True, model_cfg=self.cfg.model
|
513 |
+
)
|
514 |
+
# save memory for later steps
|
515 |
+
if not (self.cfg.ema.store_ema and (self.cfg.checkpoint.use_latest_weights_to_init_ema or not ("extra_state" in state and "ema" in state["extra_state"]))):
|
516 |
+
del state["model"]
|
517 |
+
if utils.has_parameters(self.get_criterion()):
|
518 |
+
self.get_criterion().load_state_dict(
|
519 |
+
state["criterion"], strict=True
|
520 |
+
)
|
521 |
+
del state["criterion"]
|
522 |
+
|
523 |
+
except Exception:
|
524 |
+
raise Exception(
|
525 |
+
"Cannot load model parameters from checkpoint {}; "
|
526 |
+
"please ensure that the architectures match.".format(filename)
|
527 |
+
)
|
528 |
+
extra_state = state["extra_state"]
|
529 |
+
self._optim_history = state["optimizer_history"]
|
530 |
+
|
531 |
+
if last_optim_state is not None and not reset_optimizer:
|
532 |
+
# rebuild optimizer after loading model, since params may have changed
|
533 |
+
self._build_optimizer()
|
534 |
+
|
535 |
+
# only reload optimizer and lr_scheduler if they match
|
536 |
+
last_optim = self._optim_history[-1]
|
537 |
+
assert (
|
538 |
+
last_optim["criterion_name"] == self.get_criterion().__class__.__name__
|
539 |
+
), f"Criterion does not match; please reset the optimizer (--reset-optimizer). {last_optim['criterion_name']} vs {self.get_criterion().__class__.__name__}"
|
540 |
+
assert (
|
541 |
+
last_optim["optimizer_name"] == self.optimizer.__class__.__name__
|
542 |
+
), f"Optimizer does not match; please reset the optimizer (--reset-optimizer). {last_optim['optimizer_name']} vs {self.optimizer.__class__.__name__}"
|
543 |
+
|
544 |
+
if not reset_lr_scheduler:
|
545 |
+
self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"])
|
546 |
+
|
547 |
+
if self.is_fsdp and not self.model.use_sharded_state:
|
548 |
+
# if use_sharded_state, the last_optim_state is already sharded, skip this
|
549 |
+
last_optim_state = self.model.get_shard_from_optim_state_dict(
|
550 |
+
last_optim_state
|
551 |
+
)
|
552 |
+
elif not load_on_all_ranks and is_distributed:
|
553 |
+
last_optim_state = self.optimizer.broadcast_global_state_dict(
|
554 |
+
last_optim_state
|
555 |
+
)
|
556 |
+
|
557 |
+
self.optimizer.load_state_dict(last_optim_state, optimizer_overrides)
|
558 |
+
|
559 |
+
self.set_num_updates(last_optim["num_updates"])
|
560 |
+
|
561 |
+
if extra_state is not None:
|
562 |
+
itr_state = extra_state["train_iterator"]
|
563 |
+
epoch = itr_state["epoch"]
|
564 |
+
|
565 |
+
if "previous_training_time" in extra_state:
|
566 |
+
self._previous_training_time = extra_state["previous_training_time"]
|
567 |
+
self._start_time = time.time()
|
568 |
+
|
569 |
+
self.lr_step(epoch)
|
570 |
+
|
571 |
+
if (
|
572 |
+
itr_state.get("version", 1) >= 2
|
573 |
+
and itr_state["iterations_in_epoch"] == 0
|
574 |
+
):
|
575 |
+
# reset meters at start of epoch
|
576 |
+
reset_meters = True
|
577 |
+
|
578 |
+
if "metrics" in extra_state and not reset_meters:
|
579 |
+
metrics.load_state_dict(extra_state["metrics"])
|
580 |
+
|
581 |
+
# reset TimeMeters, since their start times don't make sense anymore
|
582 |
+
for meter in metrics.get_meters("default"):
|
583 |
+
if isinstance(meter, meters.TimeMeter):
|
584 |
+
meter.reset()
|
585 |
+
|
586 |
+
if self.cfg.ema.store_ema:
|
587 |
+
if self.cfg.checkpoint.use_latest_weights_to_init_ema or "ema" not in extra_state:
|
588 |
+
if "ema" not in extra_state:
|
589 |
+
logger.warn(
|
590 |
+
"EMA not found in checkpoint. But store_ema is True. "
|
591 |
+
"EMA is re-initialized from checkpoint."
|
592 |
+
)
|
593 |
+
elif self.cfg.checkpoint.use_latest_weights_to_init_ema:
|
594 |
+
logger.info(
|
595 |
+
"use_latest_weights_to_init_ema = True. EMA is re-initialized from checkpoint."
|
596 |
+
)
|
597 |
+
self.ema.restore(state["model"], build_fp32_params=self.cfg.ema.ema_fp32)
|
598 |
+
del state["model"]
|
599 |
+
else:
|
600 |
+
logger.info(
|
601 |
+
"Loading EMA from checkpoint"
|
602 |
+
)
|
603 |
+
self.ema.restore(extra_state["ema"], build_fp32_params=False)
|
604 |
+
|
605 |
+
if self.cfg.ema.ema_fp32:
|
606 |
+
if "ema_fp32_params" in extra_state:
|
607 |
+
logger.info(
|
608 |
+
"Loading EMA fp32 params from checkpoint"
|
609 |
+
)
|
610 |
+
self.ema.build_fp32_params(extra_state["ema_fp32_params"])
|
611 |
+
else:
|
612 |
+
logger.info(
|
613 |
+
"Building EMA fp32 params from EMA model in checkpoint"
|
614 |
+
)
|
615 |
+
self.ema.build_fp32_params()
|
616 |
+
|
617 |
+
logger.info(
|
618 |
+
"Loaded checkpoint {} (epoch {} @ {} updates)".format(
|
619 |
+
filename, epoch, self.get_num_updates()
|
620 |
+
)
|
621 |
+
)
|
622 |
+
|
623 |
+
else:
|
624 |
+
logger.info("No existing checkpoint found {}".format(filename))
|
625 |
+
|
626 |
+
return extra_state
|
627 |
+
|
628 |
+
def get_train_iterator(
|
629 |
+
self,
|
630 |
+
epoch,
|
631 |
+
combine=True,
|
632 |
+
load_dataset=True,
|
633 |
+
data_selector=None,
|
634 |
+
shard_batch_itr=True,
|
635 |
+
disable_iterator_cache=False,
|
636 |
+
):
|
637 |
+
"""Return an EpochBatchIterator over the training set for a given epoch."""
|
638 |
+
if load_dataset:
|
639 |
+
logger.info("loading train data for epoch {}".format(epoch))
|
640 |
+
self.task.load_dataset(
|
641 |
+
self.cfg.dataset.train_subset,
|
642 |
+
epoch=epoch,
|
643 |
+
combine=combine,
|
644 |
+
data_selector=data_selector,
|
645 |
+
tpu=self.tpu,
|
646 |
+
)
|
647 |
+
batch_iterator = self.task.get_batch_iterator(
|
648 |
+
dataset=self.task.dataset(self.cfg.dataset.train_subset),
|
649 |
+
max_tokens=self.cfg.dataset.max_tokens,
|
650 |
+
max_sentences=self.cfg.dataset.batch_size,
|
651 |
+
max_positions=utils.resolve_max_positions(
|
652 |
+
self.task.max_positions(),
|
653 |
+
self.model.max_positions(),
|
654 |
+
self.cfg.dataset.max_tokens,
|
655 |
+
),
|
656 |
+
ignore_invalid_inputs=True,
|
657 |
+
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
|
658 |
+
seed=self.cfg.common.seed,
|
659 |
+
num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
|
660 |
+
shard_id=self.data_parallel_rank if shard_batch_itr else 0,
|
661 |
+
num_workers=self.cfg.dataset.num_workers,
|
662 |
+
epoch=epoch,
|
663 |
+
data_buffer_size=self.cfg.dataset.data_buffer_size,
|
664 |
+
disable_iterator_cache=disable_iterator_cache,
|
665 |
+
)
|
666 |
+
self.reset_dummy_batch(batch_iterator.first_batch)
|
667 |
+
batch_iterator.dataset.dataset._seek()
|
668 |
+
return batch_iterator
|
669 |
+
|
670 |
+
def get_valid_iterator(
|
671 |
+
self,
|
672 |
+
subset,
|
673 |
+
disable_iterator_cache=False,
|
674 |
+
):
|
675 |
+
"""Return an EpochBatchIterator over given validation subset for a given epoch."""
|
676 |
+
self.task.dataset(subset).dataset._seek()
|
677 |
+
batch_iterator = self.task.get_batch_iterator(
|
678 |
+
dataset=self.task.dataset(subset),
|
679 |
+
max_tokens=self.cfg.dataset.max_tokens_valid,
|
680 |
+
max_sentences=self.cfg.dataset.batch_size_valid,
|
681 |
+
max_positions=utils.resolve_max_positions(
|
682 |
+
self.task.max_positions(),
|
683 |
+
self.model.max_positions(),
|
684 |
+
),
|
685 |
+
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
|
686 |
+
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
|
687 |
+
seed=self.cfg.common.seed,
|
688 |
+
num_shards=self.data_parallel_world_size,
|
689 |
+
shard_id=self.data_parallel_rank,
|
690 |
+
num_workers=self.cfg.dataset.num_workers,
|
691 |
+
# always pass a fixed "epoch" to keep validation data consistent
|
692 |
+
# across training epochs
|
693 |
+
epoch=1,
|
694 |
+
data_buffer_size=self.cfg.dataset.data_buffer_size,
|
695 |
+
disable_iterator_cache=disable_iterator_cache,
|
696 |
+
)
|
697 |
+
self.reset_dummy_batch(batch_iterator.first_batch)
|
698 |
+
batch_iterator.dataset.dataset._seek()
|
699 |
+
return batch_iterator
|
700 |
+
|
701 |
+
def begin_epoch(self, epoch):
|
702 |
+
"""Called at the beginning of each epoch."""
|
703 |
+
logger.info("begin training epoch {}".format(epoch))
|
704 |
+
|
705 |
+
self.lr_step_begin_epoch(epoch)
|
706 |
+
|
707 |
+
if self.quantizer is not None:
|
708 |
+
self.quantizer.begin_epoch(epoch)
|
709 |
+
|
710 |
+
# task specific setup per epoch
|
711 |
+
self.task.begin_epoch(epoch, self.get_model())
|
712 |
+
|
713 |
+
if self.tpu:
|
714 |
+
import torch_xla.core.xla_model as xm
|
715 |
+
|
716 |
+
xm.rendezvous("begin_epoch") # wait for all workers
|
717 |
+
xm.mark_step()
|
718 |
+
|
719 |
+
def begin_valid_epoch(self, epoch):
|
720 |
+
"""Called at the beginning of each validation epoch."""
|
721 |
+
|
722 |
+
# task specific setup per validation epoch
|
723 |
+
self.task.begin_valid_epoch(epoch, self.get_model())
|
724 |
+
|
725 |
+
def reset_dummy_batch(self, batch):
|
726 |
+
self._dummy_batch = batch
|
727 |
+
|
728 |
+
@metrics.aggregate("train")
|
729 |
+
def train_step(self, samples, raise_oom=False):
|
730 |
+
"""Do forward, backward and parameter update."""
|
731 |
+
self._set_seed()
|
732 |
+
self.model.train()
|
733 |
+
self.criterion.train()
|
734 |
+
self.zero_grad()
|
735 |
+
|
736 |
+
metrics.log_start_time("train_wall", priority=800, round=0)
|
737 |
+
|
738 |
+
# If EMA is enabled through store_ema=True
|
739 |
+
# and task.uses_ema is True, pass the EMA model as a keyword
|
740 |
+
# argument to the task.
|
741 |
+
extra_kwargs = {}
|
742 |
+
if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
|
743 |
+
extra_kwargs["ema_model"] = self.ema.get_model()
|
744 |
+
|
745 |
+
# forward and backward pass
|
746 |
+
logging_outputs, sample_size, ooms = [], 0, 0
|
747 |
+
for i, sample in enumerate(samples): # delayed update loop
|
748 |
+
sample, is_dummy_batch = self._prepare_sample(sample)
|
749 |
+
|
750 |
+
def maybe_no_sync():
|
751 |
+
"""
|
752 |
+
Whenever *samples* contains more than one mini-batch, we
|
753 |
+
want to accumulate gradients locally and only call
|
754 |
+
all-reduce in the last backwards pass.
|
755 |
+
"""
|
756 |
+
if (
|
757 |
+
self.data_parallel_world_size > 1
|
758 |
+
and hasattr(self.model, "no_sync")
|
759 |
+
and i < len(samples) - 1
|
760 |
+
# The no_sync context manager results in increased memory
|
761 |
+
# usage with FSDP, since full-size gradients will be
|
762 |
+
# accumulated on each GPU. It's typically a better tradeoff
|
763 |
+
# to do the extra communication with FSDP.
|
764 |
+
and not self.is_fsdp
|
765 |
+
):
|
766 |
+
return self.model.no_sync()
|
767 |
+
else:
|
768 |
+
return contextlib.ExitStack() # dummy contextmanager
|
769 |
+
|
770 |
+
try:
|
771 |
+
with maybe_no_sync():
|
772 |
+
# forward and backward
|
773 |
+
loss, sample_size_i, logging_output = self.task.train_step(
|
774 |
+
sample=sample,
|
775 |
+
model=self.model,
|
776 |
+
criterion=self.criterion,
|
777 |
+
optimizer=self.optimizer,
|
778 |
+
update_num=self.get_num_updates(),
|
779 |
+
ignore_grad=is_dummy_batch,
|
780 |
+
**extra_kwargs,
|
781 |
+
)
|
782 |
+
del loss
|
783 |
+
|
784 |
+
logging_outputs.append(logging_output)
|
785 |
+
sample_size += sample_size_i
|
786 |
+
|
787 |
+
# emptying the CUDA cache after the first step can
|
788 |
+
# reduce the chance of OOM
|
789 |
+
if self.cuda and self.get_num_updates() == 0:
|
790 |
+
torch.cuda.empty_cache()
|
791 |
+
except RuntimeError as e:
|
792 |
+
if "out of memory" in str(e):
|
793 |
+
self._log_oom(e)
|
794 |
+
if raise_oom:
|
795 |
+
raise e
|
796 |
+
logger.warning(
|
797 |
+
"attempting to recover from OOM in forward/backward pass"
|
798 |
+
)
|
799 |
+
ooms += 1
|
800 |
+
self.zero_grad()
|
801 |
+
if self.cuda:
|
802 |
+
torch.cuda.empty_cache()
|
803 |
+
if self.cfg.distributed_training.distributed_world_size == 1:
|
804 |
+
return None
|
805 |
+
else:
|
806 |
+
raise e
|
807 |
+
|
808 |
+
if self.tpu and i < len(samples) - 1:
|
809 |
+
# tpu-comment: every XLA operation before marking step is
|
810 |
+
# appended to the IR graph, and processing too many batches
|
811 |
+
# before marking step can lead to OOM errors.
|
812 |
+
# To handle gradient accumulation use case, we explicitly
|
813 |
+
# mark step here for every forward pass without a backward pass
|
814 |
+
self._xla_markstep_and_send_to_cpu()
|
815 |
+
|
816 |
+
if is_dummy_batch:
|
817 |
+
if torch.is_tensor(sample_size):
|
818 |
+
sample_size.zero_()
|
819 |
+
else:
|
820 |
+
sample_size *= 0.0
|
821 |
+
|
822 |
+
if torch.is_tensor(sample_size):
|
823 |
+
sample_size = sample_size.float()
|
824 |
+
else:
|
825 |
+
sample_size = float(sample_size)
|
826 |
+
|
827 |
+
# gather logging outputs from all replicas
|
828 |
+
if self._sync_stats():
|
829 |
+
train_time = self._local_cumulative_training_time()
|
830 |
+
logging_outputs, (
|
831 |
+
sample_size,
|
832 |
+
ooms,
|
833 |
+
total_train_time,
|
834 |
+
) = self._aggregate_logging_outputs(
|
835 |
+
logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch
|
836 |
+
)
|
837 |
+
self._cumulative_training_time = (
|
838 |
+
total_train_time / self.data_parallel_world_size
|
839 |
+
)
|
840 |
+
|
841 |
+
overflow = False
|
842 |
+
try:
|
843 |
+
with torch.autograd.profiler.record_function("reduce-grads"):
|
844 |
+
# reduce gradients across workers
|
845 |
+
self.optimizer.all_reduce_grads(self.model)
|
846 |
+
if utils.has_parameters(self.criterion):
|
847 |
+
self.optimizer.all_reduce_grads(self.criterion)
|
848 |
+
|
849 |
+
with torch.autograd.profiler.record_function("multiply-grads"):
|
850 |
+
# multiply gradients by (data_parallel_size / sample_size) since
|
851 |
+
# DDP normalizes by the number of data parallel workers for
|
852 |
+
# improved fp16 precision.
|
853 |
+
# Thus we get (sum_of_gradients / sample_size) at the end.
|
854 |
+
# In case of fp16, this step also undoes loss scaling.
|
855 |
+
# (Debugging note: Some optimizers perform this scaling on the
|
856 |
+
# fly, so inspecting model.parameters() or optimizer.params may
|
857 |
+
# still show the original, unscaled gradients.)
|
858 |
+
numer = (
|
859 |
+
self.data_parallel_world_size
|
860 |
+
if not self.cfg.optimization.use_bmuf or self._sync_stats()
|
861 |
+
else 1
|
862 |
+
)
|
863 |
+
self.optimizer.multiply_grads(numer / (sample_size or 1.0))
|
864 |
+
# Note: (sample_size or 1.0) handles the case of a zero gradient, in a
|
865 |
+
# way that avoids CPU/device transfers in case sample_size is a GPU or
|
866 |
+
# TPU object. The assumption is that the gradient itself is also 0.
|
867 |
+
|
868 |
+
with torch.autograd.profiler.record_function("clip-grads"):
|
869 |
+
# clip grads
|
870 |
+
grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)
|
871 |
+
|
872 |
+
# check that grad norms are consistent across workers
|
873 |
+
# on tpu check tensor is slow
|
874 |
+
if not self.tpu:
|
875 |
+
if (
|
876 |
+
not self.cfg.optimization.use_bmuf
|
877 |
+
and self.cfg.distributed_training.ddp_backend != "slow_mo"
|
878 |
+
):
|
879 |
+
self._check_grad_norms(grad_norm)
|
880 |
+
if not torch.isfinite(grad_norm).all():
|
881 |
+
# in case of AMP, if gradients are Nan/Inf then
|
882 |
+
# optimizer step is still required
|
883 |
+
if self.cfg.common.amp:
|
884 |
+
overflow = True
|
885 |
+
else:
|
886 |
+
# check local gradnorm single GPU case, trigger NanDetector
|
887 |
+
raise FloatingPointError("gradients are Nan/Inf")
|
888 |
+
|
889 |
+
with torch.autograd.profiler.record_function("optimizer"):
|
890 |
+
# take an optimization step
|
891 |
+
self.task.optimizer_step(
|
892 |
+
self.optimizer, model=self.model, update_num=self.get_num_updates()
|
893 |
+
)
|
894 |
+
if self.cfg.common.amp and overflow:
|
895 |
+
if self._amp_retries == self.cfg.common.amp_batch_retries:
|
896 |
+
logger.info("AMP: skipping this batch.")
|
897 |
+
self._amp_retries = 0
|
898 |
+
else:
|
899 |
+
self._amp_retries += 1
|
900 |
+
return self.train_step(samples, raise_oom) # recursion to feed in same batch
|
901 |
+
|
902 |
+
except FloatingPointError:
|
903 |
+
# re-run the forward and backward pass with hooks attached to print
|
904 |
+
# out where it fails
|
905 |
+
self.zero_grad()
|
906 |
+
with NanDetector(self.get_model()):
|
907 |
+
for _, sample in enumerate(samples):
|
908 |
+
sample, _ = self._prepare_sample(sample)
|
909 |
+
self.task.train_step(
|
910 |
+
sample,
|
911 |
+
self.model,
|
912 |
+
self.criterion,
|
913 |
+
self.optimizer,
|
914 |
+
self.get_num_updates(),
|
915 |
+
ignore_grad=False,
|
916 |
+
**extra_kwargs,
|
917 |
+
)
|
918 |
+
raise
|
919 |
+
except OverflowError as e:
|
920 |
+
overflow = True
|
921 |
+
logger.info(
|
922 |
+
f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}"
|
923 |
+
)
|
924 |
+
grad_norm = torch.tensor(0.0).cuda()
|
925 |
+
self.zero_grad()
|
926 |
+
except RuntimeError as e:
|
927 |
+
if "out of memory" in str(e):
|
928 |
+
self._log_oom(e)
|
929 |
+
logger.error("OOM during optimization, irrecoverable")
|
930 |
+
raise e
|
931 |
+
|
932 |
+
# Some distributed wrappers (e.g., SlowMo) need access to the optimizer
|
933 |
+
# after the step
|
934 |
+
if hasattr(self.model, "perform_additional_optimizer_actions"):
|
935 |
+
if hasattr(self.optimizer, "fp32_params"):
|
936 |
+
self.model.perform_additional_optimizer_actions(
|
937 |
+
self.optimizer.optimizer, self.optimizer.fp32_params
|
938 |
+
)
|
939 |
+
else:
|
940 |
+
self.model.perform_additional_optimizer_actions(
|
941 |
+
self.optimizer.optimizer
|
942 |
+
)
|
943 |
+
|
944 |
+
logging_output = None
|
945 |
+
if not overflow or self.cfg.distributed_training.ddp_backend == "slow_mo":
|
946 |
+
self.set_num_updates(self.get_num_updates() + 1)
|
947 |
+
|
948 |
+
if self.cfg.ema.store_ema:
|
949 |
+
# Step EMA forward with new model.
|
950 |
+
self.ema.step(
|
951 |
+
self.get_model(),
|
952 |
+
self.get_num_updates(),
|
953 |
+
)
|
954 |
+
metrics.log_scalar(
|
955 |
+
"ema_decay",
|
956 |
+
self.ema.get_decay(),
|
957 |
+
priority=10000,
|
958 |
+
round=5,
|
959 |
+
weight=0,
|
960 |
+
)
|
961 |
+
|
962 |
+
if self.tpu:
|
963 |
+
import torch_xla.core.xla_model as xm
|
964 |
+
|
965 |
+
# mark step on TPUs
|
966 |
+
self._xla_markstep_and_send_to_cpu()
|
967 |
+
|
968 |
+
# only log stats every log_interval steps
|
969 |
+
# this causes wps to be misreported when log_interval > 1
|
970 |
+
logging_output = {}
|
971 |
+
if self.get_num_updates() % self.cfg.common.log_interval == 0:
|
972 |
+
# log memory usage
|
973 |
+
mem_info = xm.get_memory_info(self.device)
|
974 |
+
gb_free = mem_info["kb_free"] / 1024 / 1024
|
975 |
+
gb_total = mem_info["kb_total"] / 1024 / 1024
|
976 |
+
metrics.log_scalar(
|
977 |
+
"gb_free", gb_free, priority=1500, round=1, weight=0
|
978 |
+
)
|
979 |
+
metrics.log_scalar(
|
980 |
+
"gb_total", gb_total, priority=1600, round=1, weight=0
|
981 |
+
)
|
982 |
+
logging_outputs = self._xla_markstep_and_send_to_cpu(
|
983 |
+
logging_outputs
|
984 |
+
)
|
985 |
+
logging_output = self._reduce_and_log_stats(
|
986 |
+
logging_outputs, sample_size, grad_norm
|
987 |
+
)
|
988 |
+
|
989 |
+
# log whenever there's an XLA compilation, since these
|
990 |
+
# slow down training and may indicate opportunities for
|
991 |
+
# optimization
|
992 |
+
self._check_xla_compilation()
|
993 |
+
else:
|
994 |
+
if self.cuda and self.cuda_env is not None:
|
995 |
+
# log minimum free memory over the iteration
|
996 |
+
gb_used = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
|
997 |
+
torch.cuda.reset_peak_memory_stats()
|
998 |
+
gb_free = self.cuda_env.total_memory_in_GB - gb_used
|
999 |
+
metrics.log_scalar(
|
1000 |
+
"gb_free", gb_free, priority=1500, round=1, weight=0
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
# log stats
|
1004 |
+
logging_output = self._reduce_and_log_stats(
|
1005 |
+
logging_outputs, sample_size, grad_norm
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
# clear CUDA cache to reduce memory fragmentation
|
1009 |
+
if (
|
1010 |
+
self.cuda
|
1011 |
+
and self.cfg.common.empty_cache_freq > 0
|
1012 |
+
and (
|
1013 |
+
(self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
|
1014 |
+
% self.cfg.common.empty_cache_freq
|
1015 |
+
)
|
1016 |
+
== 0
|
1017 |
+
):
|
1018 |
+
torch.cuda.empty_cache()
|
1019 |
+
|
1020 |
+
if self.cfg.common.fp16 or self.cfg.common.amp:
|
1021 |
+
metrics.log_scalar(
|
1022 |
+
"loss_scale",
|
1023 |
+
(
|
1024 |
+
self.optimizer.scaler.loss_scale
|
1025 |
+
if self.cfg.common.fp16
|
1026 |
+
else self.optimizer.scaler.get_scale()
|
1027 |
+
),
|
1028 |
+
priority=700,
|
1029 |
+
round=4,
|
1030 |
+
weight=0,
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
metrics.log_stop_time("train_wall")
|
1034 |
+
return logging_output
|
1035 |
+
|
1036 |
+
@metrics.aggregate("valid")
|
1037 |
+
def valid_step(self, sample, raise_oom=False):
|
1038 |
+
"""Do forward pass in evaluation mode."""
|
1039 |
+
if self.tpu:
|
1040 |
+
import torch_xla.core.xla_model as xm
|
1041 |
+
|
1042 |
+
xm.rendezvous("valid_step") # wait for all workers
|
1043 |
+
|
1044 |
+
# If EMA is enabled through store_ema=True
|
1045 |
+
# and task.uses_ema is True, pass the EMA model as a keyword
|
1046 |
+
# argument to the task.
|
1047 |
+
extra_kwargs = {}
|
1048 |
+
if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
|
1049 |
+
extra_kwargs["ema_model"] = self.ema.get_model()
|
1050 |
+
|
1051 |
+
with torch.no_grad():
|
1052 |
+
self.model.eval()
|
1053 |
+
self.criterion.eval()
|
1054 |
+
|
1055 |
+
sample, is_dummy_batch = self._prepare_sample(sample)
|
1056 |
+
|
1057 |
+
try:
|
1058 |
+
_loss, sample_size, logging_output = self.task.valid_step(
|
1059 |
+
sample, self.model, self.criterion, **extra_kwargs
|
1060 |
+
)
|
1061 |
+
except RuntimeError as e:
|
1062 |
+
if "out of memory" in str(e):
|
1063 |
+
self._log_oom(e)
|
1064 |
+
if not raise_oom:
|
1065 |
+
logger.warning(
|
1066 |
+
"ran out of memory in validation step, retrying batch"
|
1067 |
+
)
|
1068 |
+
for p in self.model.parameters():
|
1069 |
+
if p.grad is not None:
|
1070 |
+
p.grad = None # free some memory
|
1071 |
+
if self.cuda:
|
1072 |
+
torch.cuda.empty_cache()
|
1073 |
+
return self.valid_step(sample, raise_oom=True)
|
1074 |
+
raise e
|
1075 |
+
|
1076 |
+
logging_outputs = [logging_output]
|
1077 |
+
if is_dummy_batch:
|
1078 |
+
if torch.is_tensor(sample_size):
|
1079 |
+
sample_size.zero_()
|
1080 |
+
else:
|
1081 |
+
sample_size *= 0.0
|
1082 |
+
|
1083 |
+
# gather logging outputs from all replicas
|
1084 |
+
if self.data_parallel_world_size > 1:
|
1085 |
+
logging_outputs, (sample_size,) = self._aggregate_logging_outputs(
|
1086 |
+
logging_outputs,
|
1087 |
+
sample_size,
|
1088 |
+
ignore=is_dummy_batch,
|
1089 |
+
)
|
1090 |
+
|
1091 |
+
# log validation stats
|
1092 |
+
if self.tpu:
|
1093 |
+
logging_outputs = self._xla_markstep_and_send_to_cpu(logging_outputs)
|
1094 |
+
logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)
|
1095 |
+
|
1096 |
+
return logging_output
|
1097 |
+
|
1098 |
+
def zero_grad(self):
|
1099 |
+
self.optimizer.zero_grad()
|
1100 |
+
|
1101 |
+
def lr_step_begin_epoch(self, epoch):
|
1102 |
+
"""Adjust the learning rate at the beginning of the epoch."""
|
1103 |
+
self.lr_scheduler.step_begin_epoch(epoch)
|
1104 |
+
# prefer updating the LR based on the number of steps
|
1105 |
+
return self.lr_step_update()
|
1106 |
+
|
1107 |
+
def lr_reinit(self, total_updates, num_updates):
|
1108 |
+
self.lr_scheduler.reinit(total_updates, num_updates)
|
1109 |
+
|
1110 |
+
def lr_step(self, epoch, val_loss=None):
|
1111 |
+
"""Adjust the learning rate at the end of the epoch."""
|
1112 |
+
self.lr_scheduler.step(epoch, val_loss)
|
1113 |
+
# prefer updating the LR based on the number of steps
|
1114 |
+
return self.lr_step_update()
|
1115 |
+
|
1116 |
+
def lr_step_update(self):
|
1117 |
+
"""Update the learning rate after each update."""
|
1118 |
+
new_lr = self.lr_scheduler.step_update(self.get_num_updates())
|
1119 |
+
if isinstance(new_lr, dict):
|
1120 |
+
for k, v in new_lr.items():
|
1121 |
+
metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300)
|
1122 |
+
new_lr = new_lr.get("default", next(iter(new_lr.values())))
|
1123 |
+
else:
|
1124 |
+
metrics.log_scalar("lr", new_lr, weight=0, priority=300)
|
1125 |
+
return new_lr
|
1126 |
+
|
1127 |
+
def get_lr(self):
|
1128 |
+
"""Get the current learning rate."""
|
1129 |
+
return self.optimizer.get_lr()
|
1130 |
+
|
1131 |
+
def get_model(self):
|
1132 |
+
"""Get the (non-wrapped) model instance."""
|
1133 |
+
return self._model
|
1134 |
+
|
1135 |
+
def get_criterion(self):
|
1136 |
+
"""Get the (non-wrapped) criterion instance."""
|
1137 |
+
return self._criterion
|
1138 |
+
|
1139 |
+
def get_meter(self, name):
|
1140 |
+
"""[deprecated] Get a specific meter by name."""
|
1141 |
+
from fairseq import meters
|
1142 |
+
|
1143 |
+
if "get_meter" not in self._warn_once:
|
1144 |
+
self._warn_once.add("get_meter")
|
1145 |
+
utils.deprecation_warning(
|
1146 |
+
"Trainer.get_meter is deprecated. Please use fairseq.metrics instead."
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
train_meters = metrics.get_meters("train")
|
1150 |
+
if train_meters is None:
|
1151 |
+
train_meters = {}
|
1152 |
+
|
1153 |
+
if name == "train_loss" and "loss" in train_meters:
|
1154 |
+
return train_meters["loss"]
|
1155 |
+
elif name == "train_nll_loss":
|
1156 |
+
# support for legacy train.py, which assumed this meter is
|
1157 |
+
# always initialized
|
1158 |
+
m = train_meters.get("nll_loss", None)
|
1159 |
+
return m or meters.AverageMeter()
|
1160 |
+
elif name == "wall":
|
1161 |
+
# support for legacy train.py, which assumed this meter is
|
1162 |
+
# always initialized
|
1163 |
+
m = metrics.get_meter("default", "wall")
|
1164 |
+
return m or meters.TimeMeter()
|
1165 |
+
elif name == "wps":
|
1166 |
+
m = metrics.get_meter("train", "wps")
|
1167 |
+
return m or meters.TimeMeter()
|
1168 |
+
elif name in {"valid_loss", "valid_nll_loss"}:
|
1169 |
+
# support for legacy train.py, which assumed these meters
|
1170 |
+
# are always initialized
|
1171 |
+
k = name[len("valid_") :]
|
1172 |
+
m = metrics.get_meter("valid", k)
|
1173 |
+
return m or meters.AverageMeter()
|
1174 |
+
elif name == "oom":
|
1175 |
+
return meters.AverageMeter()
|
1176 |
+
elif name in train_meters:
|
1177 |
+
return train_meters[name]
|
1178 |
+
return None
|
1179 |
+
|
1180 |
+
def get_num_updates(self):
|
1181 |
+
"""Get the number of parameters updates."""
|
1182 |
+
return self._num_updates
|
1183 |
+
|
1184 |
+
def set_num_updates(self, num_updates):
|
1185 |
+
"""Set the number of parameters updates."""
|
1186 |
+
self._num_updates = num_updates
|
1187 |
+
self.lr_step_update()
|
1188 |
+
if self.quantizer:
|
1189 |
+
self.quantizer.step_update(self._num_updates)
|
1190 |
+
metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)
|
1191 |
+
|
1192 |
+
def clip_grad_norm(self, clip_norm):
|
1193 |
+
def agg_norm_fn(total_norm):
|
1194 |
+
total_norm = total_norm.cuda().float() ** 2
|
1195 |
+
total_norm = distributed_utils.all_reduce(
|
1196 |
+
total_norm, group=self.data_parallel_process_group
|
1197 |
+
)
|
1198 |
+
return total_norm ** 0.5
|
1199 |
+
|
1200 |
+
should_agg_norm = (
|
1201 |
+
self.is_fsdp
|
1202 |
+
and (
|
1203 |
+
self.data_parallel_process_group is not None
|
1204 |
+
or torch.distributed.is_initialized()
|
1205 |
+
)
|
1206 |
+
)
|
1207 |
+
return self.optimizer.clip_grad_norm(
|
1208 |
+
clip_norm, aggregate_norm_fn=agg_norm_fn if should_agg_norm else None
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
def cumulative_training_time(self):
|
1212 |
+
if self._cumulative_training_time is None:
|
1213 |
+
# single GPU
|
1214 |
+
return self._local_cumulative_training_time()
|
1215 |
+
else:
|
1216 |
+
return self._cumulative_training_time
|
1217 |
+
|
1218 |
+
def _local_cumulative_training_time(self):
|
1219 |
+
"""Aggregate training time in seconds."""
|
1220 |
+
return time.time() - self._start_time + self._previous_training_time
|
1221 |
+
|
1222 |
+
def _fp_convert_sample(self, sample):
|
1223 |
+
def apply_half(t):
|
1224 |
+
if t.dtype is torch.float32:
|
1225 |
+
return t.to(dtype=torch.half)
|
1226 |
+
return t
|
1227 |
+
|
1228 |
+
def apply_bfloat16(t):
|
1229 |
+
if t.dtype is torch.float32:
|
1230 |
+
return t.to(dtype=torch.bfloat16)
|
1231 |
+
return t
|
1232 |
+
|
1233 |
+
if self.cfg.common.fp16:
|
1234 |
+
sample = utils.apply_to_sample(apply_half, sample)
|
1235 |
+
|
1236 |
+
if self.cfg.common.bf16:
|
1237 |
+
sample = utils.apply_to_sample(apply_bfloat16, sample)
|
1238 |
+
|
1239 |
+
return sample
|
1240 |
+
|
1241 |
+
def _prepare_sample(self, sample, is_dummy=False):
|
1242 |
+
if sample == "DUMMY":
|
1243 |
+
raise Exception(
|
1244 |
+
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
|
1245 |
+
"that the total number of batches is smaller than the number of "
|
1246 |
+
"participating GPUs. Try reducing the batch size or using fewer GPUs."
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
if sample is None or len(sample) == 0:
|
1250 |
+
assert (
|
1251 |
+
self._dummy_batch is not None and len(self._dummy_batch) > 0
|
1252 |
+
), "Invalid dummy batch: {}".format(self._dummy_batch)
|
1253 |
+
sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True)
|
1254 |
+
return sample, True
|
1255 |
+
|
1256 |
+
# Given that PCIe/NVLink bandwidth is significantly smaller than DRAM bandwidth
|
1257 |
+
# it makes sense to do the format conversion on the CPU and then transfer
|
1258 |
+
# a smaller buffer to the device. This also saves GPU memory capacity.
|
1259 |
+
|
1260 |
+
if self.cfg.common.on_cpu_convert_precision:
|
1261 |
+
sample = self._fp_convert_sample(sample)
|
1262 |
+
|
1263 |
+
if self.cuda:
|
1264 |
+
if self.pipeline_model_parallel:
|
1265 |
+
if 'target' in sample:
|
1266 |
+
sample['target'] = utils.move_to_cuda(sample['target'], device=self.last_device)
|
1267 |
+
else:
|
1268 |
+
sample = utils.move_to_cuda(sample)
|
1269 |
+
elif self.tpu and is_dummy:
|
1270 |
+
# the dummy batch may not be on the appropriate device
|
1271 |
+
sample = utils.move_to_cuda(sample, device=self.device)
|
1272 |
+
|
1273 |
+
if not self.cfg.common.on_cpu_convert_precision:
|
1274 |
+
sample = self._fp_convert_sample(sample)
|
1275 |
+
|
1276 |
+
if self._dummy_batch == "DUMMY":
|
1277 |
+
self._dummy_batch = sample
|
1278 |
+
|
1279 |
+
return sample, False
|
1280 |
+
|
1281 |
+
def _set_seed(self):
|
1282 |
+
# Set seed based on args.seed and the update number so that we get
|
1283 |
+
# reproducible results when resuming from checkpoints
|
1284 |
+
seed = self.cfg.common.seed + self.get_num_updates()
|
1285 |
+
utils.set_torch_seed(seed)
|
1286 |
+
|
1287 |
+
def _sync_stats(self):
|
1288 |
+
# Return True if it's using multiple GPUs and DDP or multiple GPUs with
|
1289 |
+
# BMUF and it's a bmuf sync with warmup iterations completed before.
|
1290 |
+
if self.data_parallel_world_size == 1:
|
1291 |
+
return False
|
1292 |
+
elif self.cfg.optimization.use_bmuf:
|
1293 |
+
return (
|
1294 |
+
self.get_num_updates() + 1
|
1295 |
+
) % self.cfg.bmuf.global_sync_iter == 0 and (
|
1296 |
+
self.get_num_updates() + 1
|
1297 |
+
) > self.cfg.bmuf.warmup_iterations
|
1298 |
+
else:
|
1299 |
+
return True
|
1300 |
+
|
1301 |
+
def _log_oom(self, exc):
|
1302 |
+
msg = "OOM: Ran out of memory with exception: {}".format(exc)
|
1303 |
+
logger.warning(msg)
|
1304 |
+
if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"):
|
1305 |
+
for device_idx in range(torch.cuda.device_count()):
|
1306 |
+
logger.warning(torch.cuda.memory_summary(device=device_idx))
|
1307 |
+
sys.stderr.flush()
|
1308 |
+
|
1309 |
+
def _aggregate_logging_outputs(
|
1310 |
+
self,
|
1311 |
+
logging_outputs: List[Dict[str, Any]],
|
1312 |
+
*extra_stats_to_sum,
|
1313 |
+
ignore=False,
|
1314 |
+
):
|
1315 |
+
if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()):
|
1316 |
+
return self._fast_stat_sync_sum(
|
1317 |
+
logging_outputs, *extra_stats_to_sum, ignore=ignore
|
1318 |
+
)
|
1319 |
+
else:
|
1320 |
+
return self._all_gather_list_sync(
|
1321 |
+
logging_outputs, *extra_stats_to_sum, ignore=ignore
|
1322 |
+
)
|
1323 |
+
|
1324 |
+
def _all_gather_list_sync(
|
1325 |
+
self,
|
1326 |
+
logging_outputs: List[Dict[str, Any]],
|
1327 |
+
*extra_stats_to_sum,
|
1328 |
+
ignore=False,
|
1329 |
+
):
|
1330 |
+
"""
|
1331 |
+
Sync logging outputs across workers. all_gather_list_sync is
|
1332 |
+
suitable when logging outputs are complex types.
|
1333 |
+
"""
|
1334 |
+
if self.tpu:
|
1335 |
+
raise NotImplementedError
|
1336 |
+
if ignore:
|
1337 |
+
logging_outputs = []
|
1338 |
+
results = list(
|
1339 |
+
zip(
|
1340 |
+
*distributed_utils.all_gather_list(
|
1341 |
+
[logging_outputs] + list(extra_stats_to_sum),
|
1342 |
+
max_size=getattr(self.cfg.common, "all_gather_list_size", 16384),
|
1343 |
+
group=self.data_parallel_process_group,
|
1344 |
+
)
|
1345 |
+
)
|
1346 |
+
)
|
1347 |
+
logging_outputs, extra_stats_to_sum = results[0], results[1:]
|
1348 |
+
logging_outputs = list(chain.from_iterable(logging_outputs))
|
1349 |
+
extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum]
|
1350 |
+
return logging_outputs, extra_stats_to_sum
|
1351 |
+
|
1352 |
+
def _fast_stat_sync_sum(
|
1353 |
+
self,
|
1354 |
+
logging_outputs: List[Dict[str, Any]],
|
1355 |
+
*extra_stats_to_sum,
|
1356 |
+
ignore=False,
|
1357 |
+
):
|
1358 |
+
"""
|
1359 |
+
Sync logging outputs across workers. fast_stat_sync_sum is
|
1360 |
+
faster than all_gather_list_sync, but is only suitable when
|
1361 |
+
logging outputs are scalars and can be summed. Note that
|
1362 |
+
*logging_outputs* cannot contain any nested dicts/lists.
|
1363 |
+
"""
|
1364 |
+
data = {}
|
1365 |
+
for i, stat in enumerate(extra_stats_to_sum):
|
1366 |
+
data["extra_stats_" + str(i)] = stat
|
1367 |
+
if len(logging_outputs) > 0:
|
1368 |
+
log_keys = list(logging_outputs[0].keys())
|
1369 |
+
for k in log_keys:
|
1370 |
+
if not ignore:
|
1371 |
+
v = sum(log[k] for log in logging_outputs if k in log)
|
1372 |
+
else:
|
1373 |
+
v = logging_outputs[0][k]
|
1374 |
+
v = torch.zeros_like(v) if torch.is_tensor(v) else 0
|
1375 |
+
data["logging_outputs_" + k] = v
|
1376 |
+
else:
|
1377 |
+
log_keys = None
|
1378 |
+
|
1379 |
+
data = distributed_utils.all_reduce_dict(
|
1380 |
+
data, device=self.device, group=self.data_parallel_process_group
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
extra_stats_to_sum = [
|
1384 |
+
data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum))
|
1385 |
+
]
|
1386 |
+
if log_keys is not None:
|
1387 |
+
logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}]
|
1388 |
+
else:
|
1389 |
+
logging_outputs = []
|
1390 |
+
return logging_outputs, extra_stats_to_sum
|
1391 |
+
|
1392 |
+
def _check_grad_norms(self, grad_norm):
|
1393 |
+
"""Check that grad norms are consistent across workers."""
|
1394 |
+
if self._grad_norm_buf is not None:
|
1395 |
+
self._grad_norm_buf.zero_()
|
1396 |
+
self._grad_norm_buf[self.data_parallel_rank] = grad_norm
|
1397 |
+
distributed_utils.all_reduce(
|
1398 |
+
self._grad_norm_buf, group=self.data_parallel_process_group
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
def is_consistent(tensor):
|
1402 |
+
max_abs_diff = torch.max(torch.abs(tensor - tensor[0]))
|
1403 |
+
return (
|
1404 |
+
(torch.isfinite(tensor).all()
|
1405 |
+
and (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all())
|
1406 |
+
or
|
1407 |
+
(self.cfg.common.amp and not torch.isfinite(tensor).all())
|
1408 |
+
# in case of amp non-finite grads are fine
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
if not is_consistent(self._grad_norm_buf):
|
1412 |
+
pretty_detail = "\n".join(
|
1413 |
+
"rank {:3d} = {:.8f}".format(r, n)
|
1414 |
+
for r, n in enumerate(self._grad_norm_buf.tolist())
|
1415 |
+
)
|
1416 |
+
error_detail = "grad_norm across the workers:\n{}\n".format(
|
1417 |
+
pretty_detail
|
1418 |
+
)
|
1419 |
+
# use FloatingPointError to trigger NanDetector
|
1420 |
+
raise FloatingPointError(
|
1421 |
+
"Fatal error: gradients are inconsistent between workers. "
|
1422 |
+
"Try --ddp-backend=legacy_ddp. "
|
1423 |
+
"Or are you mixing up different generation of GPUs in training?"
|
1424 |
+
+ "\n"
|
1425 |
+
+ "-" * 80
|
1426 |
+
+ "\n{}\n".format(error_detail)
|
1427 |
+
+ "-" * 80
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None):
|
1431 |
+
if grad_norm is not None and (
|
1432 |
+
not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm)
|
1433 |
+
):
|
1434 |
+
metrics.log_speed("ups", 1.0, priority=100, round=2)
|
1435 |
+
metrics.log_scalar("gnorm", grad_norm, priority=400, round=3)
|
1436 |
+
if self.cfg.optimization.clip_norm > 0:
|
1437 |
+
metrics.log_scalar(
|
1438 |
+
"clip",
|
1439 |
+
torch.where(
|
1440 |
+
grad_norm > self.cfg.optimization.clip_norm,
|
1441 |
+
grad_norm.new_tensor(100),
|
1442 |
+
grad_norm.new_tensor(0),
|
1443 |
+
),
|
1444 |
+
priority=500,
|
1445 |
+
round=1,
|
1446 |
+
)
|
1447 |
+
|
1448 |
+
with metrics.aggregate() as agg:
|
1449 |
+
if logging_outputs is not None:
|
1450 |
+
self.task.reduce_metrics(logging_outputs, self.get_criterion())
|
1451 |
+
del logging_outputs
|
1452 |
+
|
1453 |
+
# extra warning for criterions that don't properly log a loss value
|
1454 |
+
if "loss" not in agg:
|
1455 |
+
if "loss" not in self._warn_once:
|
1456 |
+
self._warn_once.add("loss")
|
1457 |
+
logger.warning(
|
1458 |
+
"Criterion.reduce_metrics did not log a 'loss' value, "
|
1459 |
+
"which may break some functionality"
|
1460 |
+
)
|
1461 |
+
metrics.log_scalar("loss", -1)
|
1462 |
+
|
1463 |
+
# support legacy interface
|
1464 |
+
if self.tpu:
|
1465 |
+
logging_output = {}
|
1466 |
+
else:
|
1467 |
+
logging_output = agg.get_smoothed_values()
|
1468 |
+
logging_output["sample_size"] = sample_size
|
1469 |
+
for key_to_delete in ["ppl", "wps", "wpb", "bsz"]:
|
1470 |
+
if key_to_delete in logging_output:
|
1471 |
+
del logging_output[key_to_delete]
|
1472 |
+
return logging_output
|
1473 |
+
|
1474 |
+
def _check_xla_compilation(self):
|
1475 |
+
import torch_xla.debug.metrics as met
|
1476 |
+
|
1477 |
+
compile_stats = met.metric_data("CompileTime")
|
1478 |
+
if compile_stats is None:
|
1479 |
+
return
|
1480 |
+
num_xla_compiles = compile_stats[0]
|
1481 |
+
if num_xla_compiles > self._num_xla_compiles:
|
1482 |
+
logger.warning(
|
1483 |
+
"XLA compilation detected on device #{}; too many of these can lead "
|
1484 |
+
"to slow training, but we expect a few in the beginning".format(
|
1485 |
+
self.cfg.distributed_training.distributed_rank
|
1486 |
+
)
|
1487 |
+
)
|
1488 |
+
self._num_xla_compiles = num_xla_compiles
|
1489 |
+
|
1490 |
+
def _xla_markstep_and_send_to_cpu(self, data=None):
|
1491 |
+
import torch_xla.core.xla_model as xm
|
1492 |
+
|
1493 |
+
xm.mark_step()
|
1494 |
+
if data is not None:
|
1495 |
+
from fairseq.utils import xla_device_to_cpu
|
1496 |
+
|
1497 |
+
return xla_device_to_cpu(data)
|
1498 |
+
|
1499 |
+
|
1500 |
+
def _catalog_shared_params(module, memo=None, prefix=""):
|
1501 |
+
if memo is None:
|
1502 |
+
first_call = True
|
1503 |
+
memo = {}
|
1504 |
+
else:
|
1505 |
+
first_call = False
|
1506 |
+
for name, param in module._parameters.items():
|
1507 |
+
param_prefix = prefix + ("." if prefix else "") + name
|
1508 |
+
if param not in memo:
|
1509 |
+
memo[param] = []
|
1510 |
+
memo[param].append(param_prefix)
|
1511 |
+
for name, m in module._modules.items():
|
1512 |
+
if m is None:
|
1513 |
+
continue
|
1514 |
+
submodule_prefix = prefix + ("." if prefix else "") + name
|
1515 |
+
_catalog_shared_params(m, memo, submodule_prefix)
|
1516 |
+
if first_call:
|
1517 |
+
return [x for x in memo.values() if len(x) > 1]
|
1518 |
+
|
1519 |
+
|
1520 |
+
def _get_module_by_path(module, path):
|
1521 |
+
path = path.split(".")
|
1522 |
+
for name in path:
|
1523 |
+
module = getattr(module, name)
|
1524 |
+
return module
|
1525 |
+
|
1526 |
+
|
1527 |
+
def _set_module_by_path(module, path, value):
|
1528 |
+
path = path.split(".")
|
1529 |
+
for name in path[:-1]:
|
1530 |
+
module = getattr(module, name)
|
1531 |
+
setattr(module, path[-1], value)
|