Remove unused KeyBERT model and update BERTopic
Browse files
Models/{stackexchange_topic_model.pkl → topic_key_model_130.pkl}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:807e4facbc8beded07885eb54a9a7cd85871feb329828ec23d17cb45566d5133
|
3 |
+
size 601417294
|
Pages/Models.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
from streamlit_extras.tags import tagger_component
|
3 |
import re
|
4 |
import pickle
|
5 |
-
from keybert import KeyBERT
|
6 |
from bertopic import BERTopic
|
7 |
from keras.models import load_model
|
8 |
from keras.preprocessing.sequence import pad_sequences
|
@@ -12,8 +11,7 @@ from keras.preprocessing.sequence import pad_sequences
|
|
12 |
@st.cache_resource
|
13 |
def load_models():
|
14 |
return (
|
15 |
-
BERTopic.load(r"Models/
|
16 |
-
KeyBERT("all-MiniLM-L6-v2"),
|
17 |
load_model(r"Models/tag_model.h5"),
|
18 |
pickle.load(open(r"Models/token.pkl", "rb")),
|
19 |
pickle.load(open(r"Models/bin.pkl", "rb")),
|
@@ -21,7 +19,7 @@ def load_models():
|
|
21 |
|
22 |
|
23 |
# Load the model into memory
|
24 |
-
bertopic_model,
|
25 |
|
26 |
|
27 |
# Clean the input text
|
@@ -43,72 +41,29 @@ def tag_cnn_model(text):
|
|
43 |
|
44 |
|
45 |
# Retrieve the keyphrases from the input text using the KeyBERT model
|
46 |
-
def
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
"probability",
|
66 |
-
"neural-network",
|
67 |
-
"distributions",
|
68 |
-
"bayesian",
|
69 |
-
"hypothesis-testing",
|
70 |
-
"keras",
|
71 |
-
"mathematical-statistics",
|
72 |
-
"scikit-learn",
|
73 |
-
"logistic",
|
74 |
-
"convolutional-neural-networks",
|
75 |
-
"clustering",
|
76 |
-
"tensorflow",
|
77 |
-
"terminology",
|
78 |
-
"nlp",
|
79 |
-
"correlation",
|
80 |
-
"self-study",
|
81 |
-
"normal-distribution",
|
82 |
-
"geospatial",
|
83 |
-
"cross-validation",
|
84 |
-
"optimization",
|
85 |
-
"random-forest",
|
86 |
-
"mixed-model",
|
87 |
-
"data-mining",
|
88 |
-
"feature-selection",
|
89 |
-
"pca",
|
90 |
-
"references",
|
91 |
-
"computer-vision",
|
92 |
-
"data-visualization",
|
93 |
-
"confidence-interval",
|
94 |
-
"generalized-linear-model",
|
95 |
-
"variance",
|
96 |
-
"natural-language-processing",
|
97 |
-
"dataset",
|
98 |
-
"svm",
|
99 |
-
"training",
|
100 |
-
"maximum-likelihood",
|
101 |
-
"statistical-significance",
|
102 |
-
"gradient-descent",
|
103 |
-
"multiple-regression",
|
104 |
-
"estimation",
|
105 |
-
],
|
106 |
-
)
|
107 |
-
return sorted(keywords, key=lambda x: x[1], reverse=True)
|
108 |
|
109 |
|
110 |
# Find the most similar topics for the input text using the BERTopic model
|
111 |
-
def
|
112 |
new_review = text
|
113 |
similar_topics, similarity = bertopic_model.find_topics(new_review, top_n=n)
|
114 |
similar_topics = sorted(similar_topics)
|
@@ -139,38 +94,34 @@ def unsupervised_page_bertopic():
|
|
139 |
"Enter number of tags to assign", value=5, key="unsupervised_n_bertopic"
|
140 |
)
|
141 |
if st.button("Assign tags", key="unsupervised_button_bertopic"):
|
142 |
-
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
st.header("Unsupervised Model Using KeyBERT Model")
|
148 |
text = st.text_area(
|
149 |
"Enter text to assign tags", height=200, key="unsupervised_text_keybert"
|
150 |
)
|
151 |
text = clean_text(text)
|
152 |
n = st.number_input(
|
153 |
-
"Enter number of tags to assign", value=
|
154 |
)
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
161 |
)
|
162 |
-
|
163 |
-
|
164 |
-
value=
|
165 |
-
min_value=1,
|
166 |
-
max_value=6,
|
167 |
-
key="unsupervised_ngram_upper",
|
168 |
)
|
169 |
-
|
170 |
-
|
171 |
-
topics = retrieve_keyphrases(text, n, ngram_range)
|
172 |
-
topics = [topic[0] for topic in topics]
|
173 |
-
tagger_component("Tags:", topics)
|
174 |
|
175 |
|
176 |
# Display the model page of the app
|
@@ -187,14 +138,21 @@ def model_page():
|
|
187 |
|
188 |
st.title("Select a model to use:")
|
189 |
with st.container():
|
190 |
-
tab1, tab2, tab3 = st.tabs(
|
191 |
-
[
|
|
|
|
|
|
|
|
|
|
|
192 |
)
|
193 |
with tab1:
|
194 |
supervised_page()
|
195 |
with tab2:
|
196 |
-
|
197 |
with tab3:
|
|
|
|
|
198 |
unsupervised_page_bertopic()
|
199 |
with st.container():
|
200 |
with st.expander("Example Texts", expanded=False):
|
|
|
2 |
from streamlit_extras.tags import tagger_component
|
3 |
import re
|
4 |
import pickle
|
|
|
5 |
from bertopic import BERTopic
|
6 |
from keras.models import load_model
|
7 |
from keras.preprocessing.sequence import pad_sequences
|
|
|
11 |
@st.cache_resource
|
12 |
def load_models():
|
13 |
return (
|
14 |
+
BERTopic.load(r"Models/topic_key_model_130.pkl"),
|
|
|
15 |
load_model(r"Models/tag_model.h5"),
|
16 |
pickle.load(open(r"Models/token.pkl", "rb")),
|
17 |
pickle.load(open(r"Models/bin.pkl", "rb")),
|
|
|
19 |
|
20 |
|
21 |
# Load the model into memory
|
22 |
+
bertopic_model, cnn_model, tokenizer, binarizer = load_models()
|
23 |
|
24 |
|
25 |
# Clean the input text
|
|
|
41 |
|
42 |
|
43 |
# Retrieve the keyphrases from the input text using the KeyBERT model
|
44 |
+
def output_keybert(text, n):
|
45 |
+
new_review = text
|
46 |
+
similar_topics, similarity = bertopic_model.find_topics(new_review, top_n=n)
|
47 |
+
similar_topics = sorted(similar_topics)
|
48 |
+
for i in range(n):
|
49 |
+
tags = bertopic_model.get_topic(similar_topics[i], full=True)["KeyBERT"]
|
50 |
+
tags = [tag[0] for tag in tags]
|
51 |
+
tagger_component(f"Tags from cluster {i+1}:", tags)
|
52 |
+
|
53 |
+
|
54 |
+
# Retrieve the keyphrases from the input text using the Bertopics MMR model
|
55 |
+
def output_mmr(text, n):
|
56 |
+
new_review = text
|
57 |
+
similar_topics, similarity = bertopic_model.find_topics(new_review, top_n=n)
|
58 |
+
similar_topics = sorted(similar_topics)
|
59 |
+
for i in range(n):
|
60 |
+
tags = bertopic_model.get_topic(similar_topics[i], full=True)["MMR"]
|
61 |
+
tags = [tag[0] for tag in tags]
|
62 |
+
tagger_component(f"Tags from cluster {i+1}:", tags)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
# Find the most similar topics for the input text using the BERTopic model
|
66 |
+
def output_bertopic(text, n):
|
67 |
new_review = text
|
68 |
similar_topics, similarity = bertopic_model.find_topics(new_review, top_n=n)
|
69 |
similar_topics = sorted(similar_topics)
|
|
|
94 |
"Enter number of tags to assign", value=5, key="unsupervised_n_bertopic"
|
95 |
)
|
96 |
if st.button("Assign tags", key="unsupervised_button_bertopic"):
|
97 |
+
output_bertopic(text, n)
|
98 |
|
99 |
|
100 |
+
def unsupervised_page_keybert():
|
101 |
+
st.header("Unsupervised Model Using BERTopic Model")
|
|
|
102 |
text = st.text_area(
|
103 |
"Enter text to assign tags", height=200, key="unsupervised_text_keybert"
|
104 |
)
|
105 |
text = clean_text(text)
|
106 |
n = st.number_input(
|
107 |
+
"Enter number of tags to assign", value=5, key="unsupervised_n_keybert"
|
108 |
)
|
109 |
+
if st.button("Assign tags", key="unsupervised_button_keybert"):
|
110 |
+
output_keybert(text, n)
|
111 |
+
|
112 |
+
|
113 |
+
# Display the unsupervised model using bertopic page of the app
|
114 |
+
def unsupervised_page_mmr():
|
115 |
+
st.header("Unsupervised Model Using BERTopic Model")
|
116 |
+
text = st.text_area(
|
117 |
+
"Enter text to assign tags", height=200, key="unsupervised_text_mmr"
|
118 |
)
|
119 |
+
text = clean_text(text)
|
120 |
+
n = st.number_input(
|
121 |
+
"Enter number of tags to assign", value=5, key="unsupervised_n_mmr"
|
|
|
|
|
|
|
122 |
)
|
123 |
+
if st.button("Assign tags", key="unsupervised_button_mmr"):
|
124 |
+
output_mmr(text, n)
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
# Display the model page of the app
|
|
|
138 |
|
139 |
st.title("Select a model to use:")
|
140 |
with st.container():
|
141 |
+
tab1, tab2, tab3, tab4 = st.tabs(
|
142 |
+
[
|
143 |
+
"Supervised Using CNN",
|
144 |
+
"UnSupervised-KeyBERT",
|
145 |
+
"UnSupervised-MMR",
|
146 |
+
"UnSupervised-BERTopic",
|
147 |
+
]
|
148 |
)
|
149 |
with tab1:
|
150 |
supervised_page()
|
151 |
with tab2:
|
152 |
+
unsupervised_page_keybert()
|
153 |
with tab3:
|
154 |
+
unsupervised_page_mmr()
|
155 |
+
with tab4:
|
156 |
unsupervised_page_bertopic()
|
157 |
with st.container():
|
158 |
with st.expander("Example Texts", expanded=False):
|
Pages/Topic Model Results.py
CHANGED
@@ -4,7 +4,7 @@ from bertopic import BERTopic
|
|
4 |
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
7 |
-
return BERTopic.load(r"Models/
|
8 |
|
9 |
|
10 |
bertopic_model = load_model()
|
|
|
4 |
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
7 |
+
return BERTopic.load(r"Models/topic_key_model_130.pkl")
|
8 |
|
9 |
|
10 |
bertopic_model = load_model()
|