Spaces:
Runtime error
Runtime error
import pytesseract | |
import torch | |
import gradio as gr | |
from transformers import LayoutLMForSequenceClassification | |
from preprocess import apply_ocr,encode_example | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# pytesseract.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe" | |
model = LayoutLMForSequenceClassification.from_pretrained("models/document_model") | |
model.to(device) | |
classes=['questionnaire', 'memo', 'budget', 'file_folder', 'specification', 'invoice', 'resume', | |
'advertisement', 'news_article', 'email', 'scientific_publication', 'presentation', | |
'letter', 'form', 'handwritten', 'scientific_report'] | |
def predict(image): | |
example = apply_ocr(image) | |
encoded_example = encode_example(example) | |
input_ids = torch.tensor(encoded_example['input_ids']).unsqueeze(0) | |
bbox = torch.tensor(encoded_example['bbox']).unsqueeze(0) | |
attention_mask = torch.tensor(encoded_example['attention_mask']).unsqueeze(0) | |
token_type_ids = torch.tensor(encoded_example['token_type_ids']).unsqueeze(0) | |
model.eval() | |
outputs=model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) | |
classification_results = torch.softmax(outputs.logits, dim=1).tolist()[0] | |
max_prob_index = classification_results.index(max(classification_results)) | |
predicted_class = classes[max_prob_index] | |
return predicted_class | |
title="Document Image Classification" | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Textbox(label="Predicted Class"), | |
title=title, | |
) | |
demo.launch() |