File size: 5,199 Bytes
9c8c5e4
 
 
 
5931d56
 
144c0ad
 
 
 
 
9c8c5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html

# tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
# model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
# tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", trust_remote_code=True)
# model = AutoModel.from_pretrained("baichuan-inc/Baichuan-13B-Chat", trust_remote_code=True).float()
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B-Chat", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan-13B-Chat")
model = model.eval()

"""Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(input, image_path, chatbot, max_length, top_p, temperature, history):
    if image_path is None:
        return [(input, "ε›Ύη‰‡δΈΊη©ΊοΌθ―·ι‡ζ–°δΈŠδΌ ε›Ύη‰‡εΉΆι‡θ―•γ€‚")]
    chatbot.append((parse_text(input), ""))
    for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p,
                                               temperature=temperature):
        chatbot[-1] = (parse_text(input), parse_text(response))

        yield chatbot, history


def predict_new_image(image_path, chatbot, max_length, top_p, temperature):
    input, history = "描述这张图片。", []
    chatbot.append((parse_text(input), ""))
    for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length,
                                               top_p=top_p,
                                               temperature=temperature):
        chatbot[-1] = (parse_text(input), parse_text(response))

        yield chatbot, history


def reset_user_input():
    return gr.update(value='')


def reset_state():
    return None, [], []


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">VisualGLM</h1>""")

    image_path = gr.Image(type="filepath", label="Image Prompt", value=None)
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
                    container=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit", variant="primary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True)

    history = gr.State([])

    submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history],
                    show_progress=True)

    image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history],
                      show_progress=True)
    image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True)

    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True)

demo.queue().launch(share=False, inbrowser=True)