File size: 1,986 Bytes
9c8c5e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import os
import platform
import signal
import sys
from transformers import AutoTokenizer, AutoModel
import readline
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = False
def build_prompt(history, prefix):
prompt = prefix
for query, response in history:
prompt += f"\n\n็จๆท๏ผ{query}"
prompt += f"\n\nChatGLM-6B๏ผ{response}"
return prompt
def signal_handler(signal, frame):
global stop_stream
stop_stream = True
def main():
global stop_stream
while True:
history = []
prefix = "ๆฌข่ฟไฝฟ็จ VisualGLM-6B ๆจกๅ๏ผ่พๅ
ฅๅพ็่ทฏๅพๅๅ
ๅฎนๅณๅฏ่ฟ่กๅฏน่ฏ๏ผclear ๆธ
็ฉบๅฏน่ฏๅๅฒ๏ผstop ็ปๆญข็จๅบ"
print(prefix)
image_path = input("\n่ฏท่พๅ
ฅๅพ็่ทฏๅพ๏ผ")
if image_path == "stop":
break
prefix = prefix + "\n" + image_path
query = "ๆ่ฟฐ่ฟๅผ ๅพ็ใ"
while True:
count = 0
for response, history in model.stream_chat(tokenizer, image_path, query, history=history):
if stop_stream:
stop_stream = False
break
else:
count += 1
if count % 8 == 0:
os.system(clear_command)
print(build_prompt(history, prefix), flush=True)
signal.signal(signal.SIGINT, signal_handler)
os.system(clear_command)
print(build_prompt(history, prefix), flush=True)
query = input("\n็จๆท๏ผ")
if query.strip() == "clear":
break
if query.strip() == "stop":
sys.exit(0)
if __name__ == "__main__":
main()
|