project__final / App.py
HebaAllah's picture
Upload App.py
db9de1d verified
import os
import tensorflow as tf
import gradio as gr
import numpy as np
from PIL import Image
# Disable all GPUS
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
current_directory = os.path.abspath(os.path.dirname(__file__))
# Load your pre-trained model
def load_model():
model = tf.keras.models.load_model(os.path.join(current_directory, "model.h5")) # Replace with your model's path
return model
model = load_model()
# Define the labels (categories)
labels = ['Water', 'Cloudy', 'Desert', 'Green Area']
# Function to preprocess the image and predict the class
def classify_image(image):
# Ensure the image is in PIL format
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
img = image.resize((128, 128)) # Resize the image
img = np.array(img) / 255.0 # Normalize the image
img = np.expand_dims(img, axis=0) # Add batch dimension
prediction = model.predict(img)
predicted_class = labels[np.argmax(prediction)]
# Prepare output with probabilities
return {labels[i]: float(prediction[0][i]) for i in range(len(labels))}
# Define the Gradio interface
image_input = gr.Image(type="pil") # Use "pil" as the type for PIL images
label_output = gr.Label(num_top_classes=4)
# Launch the interface
gr.Interface(fn=classify_image,
inputs=image_input,
outputs=label_output,
title="Satellite Image Classification",
description="Classify satellite images into four types: Water, Cloudy, Desert, Green Area").launch()