Spaces:
Runtime error
Runtime error
import os | |
import tensorflow as tf | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
# Disable all GPUS | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
current_directory = os.path.abspath(os.path.dirname(__file__)) | |
# Load your pre-trained model | |
def load_model(): | |
model = tf.keras.models.load_model(os.path.join(current_directory, "model.h5")) # Replace with your model's path | |
return model | |
model = load_model() | |
# Define the labels (categories) | |
labels = ['Water', 'Cloudy', 'Desert', 'Green Area'] | |
# Function to preprocess the image and predict the class | |
def classify_image(image): | |
# Ensure the image is in PIL format | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
img = image.resize((128, 128)) # Resize the image | |
img = np.array(img) / 255.0 # Normalize the image | |
img = np.expand_dims(img, axis=0) # Add batch dimension | |
prediction = model.predict(img) | |
predicted_class = labels[np.argmax(prediction)] | |
# Prepare output with probabilities | |
return {labels[i]: float(prediction[0][i]) for i in range(len(labels))} | |
# Define the Gradio interface | |
image_input = gr.Image(type="pil") # Use "pil" as the type for PIL images | |
label_output = gr.Label(num_top_classes=4) | |
# Launch the interface | |
gr.Interface(fn=classify_image, | |
inputs=image_input, | |
outputs=label_output, | |
title="Satellite Image Classification", | |
description="Classify satellite images into four types: Water, Cloudy, Desert, Green Area").launch() | |