|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import DiffusionPipeline |
|
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline |
|
import torch |
|
from huggingface_hub import snapshot_download |
|
import openvino.runtime as ov |
|
from typing import Optional, Dict |
|
|
|
|
|
|
|
model_id = "Disty0/LCM_SoteMix" |
|
|
|
|
|
|
|
HIGH=768 |
|
WIDTH=512 |
|
|
|
batch_size = -1 |
|
class CustomOVModelVaeDecoder(OVModelVaeDecoder): |
|
def __init__( |
|
self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, |
|
): |
|
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) |
|
|
|
|
|
pipe = OVStableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
compile = False, |
|
ov_config = {"CACHE_DIR":""}, |
|
|
|
|
|
|
|
torch_dtype=torch.IntTensor, |
|
use_safetensors=False, |
|
) |
|
|
|
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino") |
|
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), |
|
parent_model = pipe, |
|
model_dir = taesd_dir |
|
) |
|
pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe.compile() |
|
|
|
prompt="" |
|
negative_prompt="(worst quality, low quality, lowres), zombie, interlocked fingers," |
|
|
|
def infer(prompt,negative_prompt): |
|
|
|
image = pipe( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
width = WIDTH, |
|
height = HIGH, |
|
guidance_scale=1.0, |
|
num_inference_steps=8, |
|
num_images_per_prompt=1, |
|
).images[0] |
|
|
|
return image |
|
|
|
|
|
examples = [ |
|
"Sailor Chibi Moon, Katsura Masakazu style", |
|
"1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes", |
|
"A cute kitten, Tinkle style.", |
|
"(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
|
|
power_device = "CPU" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# Disty0/LCM_SoteMix {WIDTH}x{HIGH} |
|
Currently running on {power_device}. |
|
""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [result] |
|
) |
|
|
|
run_button.click( |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [result] |
|
) |
|
|
|
demo.queue().launch() |