HelloSun commited on
Commit
1cce0f0
·
verified ·
1 Parent(s): 19094a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -90
app.py CHANGED
@@ -2,44 +2,63 @@ import gradio as gr
2
  import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
 
5
  import torch
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ).images[0]
37
 
38
  return image
39
 
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
  "A delicious ceviche cheesecake slice",
44
  ]
45
 
@@ -50,88 +69,29 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
  Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
71
  max_lines=1,
72
  placeholder="Enter your prompt",
73
  container=False,
74
- )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
  gr.Examples(
136
  examples = examples,
137
  inputs = [prompt]
@@ -139,7 +99,7 @@ with gr.Blocks(css=css) as demo:
139
 
140
  run_button.click(
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
  outputs = [result]
144
  )
145
 
 
2
  import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
5
+ from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
6
  import torch
7
+ from huggingface_hub import snapshot_download
8
+ import openvino.runtime as ov
9
+ from typing import Optional, Dict
10
 
11
+ model_id = "Disty0/LCM_SoteMix"
12
+ batch_size = -1
13
+ class CustomOVModelVaeDecoder(OVModelVaeDecoder):
14
+ def __init__(
15
+ self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
16
+ ):
17
+ super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
18
 
 
 
 
 
 
 
 
 
19
 
20
+ pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})
 
21
 
22
+ taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
23
+ pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
24
+
25
+ pipe.reshape( batch_size=-1, height=512, width=512, num_images_per_prompt=1)
26
+ pipe.compile()
27
+
28
+
29
+ def infer(prompt,negative_prompt):
30
 
 
 
 
 
 
31
  image = pipe(
32
+ prompt = prompt+"score_8_up,score_7_up,score_6_up,score_9,score_8_up,score_7,masterpiece,best quality,source_anime,bangs,",
33
+ negative_prompt = "score_6,score_5,score_4,source_furry,pathway,walkway,face mask,heterochromia,\
34
+ tattoos,muscular,deformed iris,deformed pupils,long body,long neck,text,error,print,signature,\
35
+ logo,watermark,deformed,distorted,disfigured,bad anatomy,wrong anatomy,ugly,disgusting,\
36
+ cropped,crooked teeth,multiple views,bad proportions,gross proportions,cloned face,\
37
+ worst quality,low quality,normal quality,bad quality,lowres,poorly drawn,semi-realistic,\
38
+ 3d,render,cg,cgi,imperfect,partial,unfinished,incomplete,monochrome,grayscale,sepia,fat,\
39
+ wrinkle,fat leg,fat ass,blurry,hazy,sagging breasts,longbody,lowres,\
40
+ bad anatomy,bad hands,missing fingers,extra digit,fewer digits,worst quality,\
41
+ low quality,normal quality,watermark,artist name,signature,(bad anatomy)), ((bad art)),\
42
+ (((bad proportions))), (b&w), (black/white), (black and white), blurry, body out of frame,\
43
+ canvas frame, cloned face, ((close up)), cross-eye, ((deformed)), ((disfigured)), (((duplicate))), \
44
+ (((extra arms))), extra fingers, (((extra legs))), ((extra limbs)), (fused fingers), gross proportions, \
45
+ ((morbid)), (malformed limbs), ((missing arms)), ((missing legs)), mutated, mutated hands, \
46
+ (((mutation))), ((mutilated)), (out of frame), ((poorly drawn face)), poorly drawn feet, \
47
+ ((poorly drawn hands)), tiling, (too many fingers), ((ugly)), wierd colors, (((long neck))), \
48
+ ugly, words, wrinkles, writing",
49
+ width = 512,
50
+ height = 512,
51
+ guidance_scale=1.0,
52
+ num_inference_steps=8,
53
+ num_images_per_prompt=1,
54
  ).images[0]
55
 
56
  return image
57
 
58
+
59
  examples = [
60
+ "A cute kitten, Japanese cartoon style.",
61
+ "A sweet family, dad stands next to mom, mom holds baby girl.",
62
  "A delicious ceviche cheesecake slice",
63
  ]
64
 
 
69
  }
70
  """
71
 
72
+
73
+ power_device = "CPU"
 
 
74
 
75
  with gr.Blocks(css=css) as demo:
76
 
77
  with gr.Column(elem_id="col-container"):
78
  gr.Markdown(f"""
79
+ # Disty0/LCM_SoteMix 512x512
80
  Currently running on {power_device}.
81
  """)
82
 
83
  with gr.Row():
 
84
  prompt = gr.Text(
85
  label="Prompt",
86
  show_label=False,
87
  max_lines=1,
88
  placeholder="Enter your prompt",
89
  container=False,
90
+ )
 
91
  run_button = gr.Button("Run", scale=0)
92
 
93
  result = gr.Image(label="Result", show_label=False)
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  gr.Examples(
96
  examples = examples,
97
  inputs = [prompt]
 
99
 
100
  run_button.click(
101
  fn = infer,
102
+ inputs = [prompt],
103
  outputs = [result]
104
  )
105