|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from optimum.intel import OVModelForCausalLM |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
|
|
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino" |
|
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def respond(message, history): |
|
|
|
input_text = message if not history else history[-1]["content"] + " " + message |
|
input_text = message |
|
|
|
response = pipe(input_text, max_length=500, truncation=True, num_return_sequences=1) |
|
reply = response[0]['generated_text'] |
|
|
|
|
|
print(f"Message: {message}") |
|
print(f"Reply: {reply}") |
|
return reply |
|
|
|
|
|
demo = gr.ChatInterface(fn=respond, title="Chat with Qwen(通義千問) 2.5-0.5B", description="與 Qwen2.5-0.5B-Instruct-openvino 聊天!", type='messages') |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |