Spaces:
Sleeping
Sleeping
koptelovmax
commited on
Commit
·
caacd68
1
Parent(s):
3f4e0cd
Add application file
Browse files- app.py +68 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import CamembertTokenizer, CamembertForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
@st.cache_resource
|
7 |
+
def load_tokenizer():
|
8 |
+
return CamembertTokenizer.from_pretrained("camembert-base")
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
return CamembertForSequenceClassification.from_pretrained("herelles/camembert-base-lupan")
|
13 |
+
|
14 |
+
# Define tokenizer:
|
15 |
+
tokenizer = load_tokenizer()
|
16 |
+
|
17 |
+
# Load model:
|
18 |
+
model = load_model()
|
19 |
+
model.to('cpu')
|
20 |
+
|
21 |
+
def prediction(segment_text):
|
22 |
+
test_ids = []
|
23 |
+
test_attention_mask = []
|
24 |
+
|
25 |
+
# Apply the tokenizer
|
26 |
+
encoding = tokenizer(segment_text, padding="longest", return_tensors="pt")
|
27 |
+
|
28 |
+
# Extract IDs and Attention Mask
|
29 |
+
test_ids.append(encoding['input_ids'])
|
30 |
+
test_attention_mask.append(encoding['attention_mask'])
|
31 |
+
test_ids = torch.cat(test_ids, dim = 0)
|
32 |
+
test_attention_mask = torch.cat(test_attention_mask, dim = 0)
|
33 |
+
|
34 |
+
# Forward pass, calculate logit predictions
|
35 |
+
with torch.no_grad():
|
36 |
+
output = model(test_ids.to('cpu'), token_type_ids = None, attention_mask = test_attention_mask.to('cpu'))
|
37 |
+
|
38 |
+
return np.argmax(output.logits.cpu().numpy()).flatten().item()
|
39 |
+
|
40 |
+
def main():
|
41 |
+
st.header('Textual segments Hérelles prediction tool', divider='rainbow')
|
42 |
+
|
43 |
+
segment_text = st.text_area(
|
44 |
+
"Text to classify:",
|
45 |
+
"Article 1 : Occupations ou utilisations du sol interdites\n\n"
|
46 |
+
"1) Dans l’ensemble de la zone sont interdits :\n\n"
|
47 |
+
"Les constructions destinées à l’habitation ne dépendant pas d’une exploitation agricole autres\n"
|
48 |
+
"que celles visées à l’article 2 paragraphe 1).",
|
49 |
+
height=170,
|
50 |
+
)
|
51 |
+
|
52 |
+
if st.button('Predict'):
|
53 |
+
pred_id = prediction(segment_text)
|
54 |
+
|
55 |
+
if pred_id == 0:
|
56 |
+
pred_label = 'Not pertinent'
|
57 |
+
elif pred_id == 1:
|
58 |
+
pred_label = 'Pertinent (Soft)'
|
59 |
+
elif pred_id == 2:
|
60 |
+
pred_label = 'Pertinent (Strict, Non-verifiable)'
|
61 |
+
elif pred_id == 3:
|
62 |
+
pred_label = 'Pertinent (Strict, Verifiable)'
|
63 |
+
|
64 |
+
st.write("Predicted Class: ", pred_label)
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
main()
|
68 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
sentencepiece
|
4 |
+
torch
|
5 |
+
numpy
|