Spaces:
Runtime error
Runtime error
File size: 43,034 Bytes
01c9658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
"""Contains all of the events that can be triggered in a gr.Blocks() app, with the exception
of the on-page-load event, which is defined in gr.Blocks().load()."""
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Set
from gradio.blocks import Block
from gradio.utils import get_cancel_function
if TYPE_CHECKING: # Only import for type checking (is False at runtime).
from gradio.components import Component, StatusTracker
def set_cancel_events(
block: Block, event_name: str, cancels: None | Dict[str, Any] | List[Dict[str, Any]]
):
if cancels:
if not isinstance(cancels, list):
cancels = [cancels]
cancel_fn, fn_indices_to_cancel = get_cancel_function(cancels)
block.set_event_trigger(
event_name,
cancel_fn,
inputs=None,
outputs=None,
queue=False,
preprocess=False,
cancels=fn_indices_to_cancel,
)
class EventListener(Block):
pass
class Changeable(EventListener):
def change(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the component's input value changes (e.g. when the user types in a textbox
or uploads an image). This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"change",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "change", cancels)
return dep
class Clickable(EventListener):
def click(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue=None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the component (e.g. a button) is clicked.
This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"click",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "click", cancels)
return dep
class Submittable(EventListener):
def submit(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user presses the Enter key while the component (e.g. a textbox) is focused.
This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"submit",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "submit", cancels)
return dep
class Editable(EventListener):
def edit(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user edits the component (e.g. image) using the
built-in editor. This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"edit",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "edit", cancels)
return dep
class Clearable(EventListener):
def clear(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user clears the component (e.g. image or audio)
using the X button for the component. This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"submit",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "submit", cancels)
return dep
class Playable(EventListener):
def play(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user plays the component (e.g. audio or video).
This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"play",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "play", cancels)
return dep
def pause(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user pauses the component (e.g. audio or video).
This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"pause",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "pause", cancels)
return dep
def stop(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user stops the component (e.g. audio or video).
This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"stop",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "stop", cancels)
return dep
class Streamable(EventListener):
def stream(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
status_tracker: StatusTracker | None = None,
scroll_to_output: bool = False,
show_progress: bool = False,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user streams the component (e.g. a live webcam
component). This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
self.streaming = True
if status_tracker:
warnings.warn(
"The 'status_tracker' parameter has been deprecated and has no effect."
)
dep = self.set_event_trigger(
"stream",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "stream", cancels)
return dep
class Blurrable(EventListener):
def blur(
self,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None = None,
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: Dict[str, Any] | List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the component's is unfocused/blurred (e.g. when the user clicks outside of a textbox). This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: Callable function
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
self.set_event_trigger(
"blur",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "blur", cancels)
class Uploadable(EventListener):
def upload(
self,
fn: Callable | None,
inputs: List[Component],
outputs: Component | List[Component] | None = None,
api_name: str | None = None,
scroll_to_output: bool = False,
show_progress: bool = True,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: List[Dict[str, Any]] | None = None,
every: float | None = None,
_js: str | None = None,
):
"""
This event is triggered when the user uploads a file into the component (e.g. when the user uploads a video into a video component). This method can be used when this component is in a Gradio Blocks.
Parameters:
fn: Callable function
inputs: List of inputs
outputs: List of outputs
api_name: Defining this parameter exposes the endpoint in the api docs
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue exists
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
"""
# _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
self.set_event_trigger(
"upload",
fn,
inputs,
outputs,
preprocess=preprocess,
postprocess=postprocess,
scroll_to_output=scroll_to_output,
show_progress=show_progress,
api_name=api_name,
js=_js,
queue=queue,
batch=batch,
max_batch_size=max_batch_size,
every=every,
)
set_cancel_events(self, "upload", cancels)
|