File size: 28,111 Bytes
bf0b5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import inspect
import logging.config
import os
import platform
import re
import subprocess
import sys
import threading
import urllib
import uuid
from pathlib import Path
from types import SimpleNamespace
from typing import Union

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import yaml

from ultralytics import __version__

# PyTorch Multi-GPU DDP Constants
RANK = int(os.getenv('RANK', -1))
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))

# Other Constants
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2]  # YOLO
DEFAULT_CFG_PATH = ROOT / 'yolo/cfg/default.yaml'
NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true'  # global auto-install mode
VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true'  # global verbose mode
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}'  # tqdm bar format
LOGGING_NAME = 'ultralytics'
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows'])  # environment booleans
HELP_MSG = \
    """
    Usage examples for running YOLOv8:

    1. Install the ultralytics package:

        pip install ultralytics

    2. Use the Python SDK:

        from ultralytics import YOLO

        # Load a model
        model = YOLO('yolov8n.yaml')  # build a new model from scratch
        model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

        # Use the model
        results = model.train(data="coco128.yaml", epochs=3)  # train the model
        results = model.val()  # evaluate model performance on the validation set
        results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
        success = model.export(format='onnx')  # export the model to ONNX format

    3. Use the command line interface (CLI):

        YOLOv8 'yolo' CLI commands use the following syntax:

            yolo TASK MODE ARGS

            Where   TASK (optional) is one of [detect, segment, classify]
                    MODE (required) is one of [train, val, predict, export]
                    ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
                        See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'

        - Train a detection model for 10 epochs with an initial learning_rate of 0.01
            yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

        - Predict a YouTube video using a pretrained segmentation model at image size 320:
            yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320

        - Val a pretrained detection model at batch-size 1 and image size 640:
            yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640

        - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
            yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128

        - Run special commands:
            yolo help
            yolo checks
            yolo version
            yolo settings
            yolo copy-cfg
            yolo cfg

    Docs: https://docs.ultralytics.com
    Community: https://community.ultralytics.com
    GitHub: https://github.com/ultralytics/ultralytics
    """

# Settings
torch.set_printoptions(linewidth=320, precision=4, profile='default')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'  # for deterministic training
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # suppress verbose TF compiler warnings in Colab


class SimpleClass:
    """
    Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute
    access methods for easier debugging and usage.
    """

    def __str__(self):
        """Return a human-readable string representation of the object."""
        attr = []
        for a in dir(self):
            v = getattr(self, a)
            if not callable(v) and not a.startswith('_'):
                if isinstance(v, SimpleClass):
                    # Display only the module and class name for subclasses
                    s = f'{a}: {v.__module__}.{v.__class__.__name__} object'
                else:
                    s = f'{a}: {repr(v)}'
                attr.append(s)
        return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr)

    def __repr__(self):
        """Return a machine-readable string representation of the object."""
        return self.__str__()

    def __getattr__(self, attr):
        """Custom attribute access error message with helpful information."""
        name = self.__class__.__name__
        raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")


class IterableSimpleNamespace(SimpleNamespace):
    """
    Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and
    enables usage with dict() and for loops.
    """

    def __iter__(self):
        """Return an iterator of key-value pairs from the namespace's attributes."""
        return iter(vars(self).items())

    def __str__(self):
        """Return a human-readable string representation of the object."""
        return '\n'.join(f'{k}={v}' for k, v in vars(self).items())

    def __getattr__(self, attr):
        """Custom attribute access error message with helpful information."""
        name = self.__class__.__name__
        raise AttributeError(f"""
            '{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics
            'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace
            {DEFAULT_CFG_PATH} with the latest version from
            https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml
            """)

    def get(self, key, default=None):
        """Return the value of the specified key if it exists; otherwise, return the default value."""
        return getattr(self, key, default)


def plt_settings(rcparams=None, backend='Agg'):
    """
    Decorator to temporarily set rc parameters and the backend for a plotting function.

    Usage:
        decorator: @plt_settings({"font.size": 12})
        context manager: with plt_settings({"font.size": 12}):

    Args:
        rcparams (dict): Dictionary of rc parameters to set.
        backend (str, optional): Name of the backend to use. Defaults to 'Agg'.

    Returns:
        (Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be
            applied to any function that needs to have specific matplotlib rc parameters and backend for its execution.
    """

    if rcparams is None:
        rcparams = {'font.size': 11}

    def decorator(func):
        """Decorator to apply temporary rc parameters and backend to a function."""

        def wrapper(*args, **kwargs):
            """Sets rc parameters and backend, calls the original function, and restores the settings."""
            original_backend = plt.get_backend()
            plt.switch_backend(backend)

            with plt.rc_context(rcparams):
                result = func(*args, **kwargs)

            plt.switch_backend(original_backend)
            return result

        return wrapper

    return decorator


def set_logging(name=LOGGING_NAME, verbose=True):
    """Sets up logging for the given name."""
    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
    level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
    logging.config.dictConfig({
        'version': 1,
        'disable_existing_loggers': False,
        'formatters': {
            name: {
                'format': '%(message)s'}},
        'handlers': {
            name: {
                'class': 'logging.StreamHandler',
                'formatter': name,
                'level': level}},
        'loggers': {
            name: {
                'level': level,
                'handlers': [name],
                'propagate': False}}})


def emojis(string=''):
    """Return platform-dependent emoji-safe version of string."""
    return string.encode().decode('ascii', 'ignore') if WINDOWS else string


class EmojiFilter(logging.Filter):
    """
    A custom logging filter class for removing emojis in log messages.

    This filter is particularly useful for ensuring compatibility with Windows terminals
    that may not support the display of emojis in log messages.
    """

    def filter(self, record):
        """Filter logs by emoji unicode characters on windows."""
        record.msg = emojis(record.msg)
        return super().filter(record)


# Set logger
set_logging(LOGGING_NAME, verbose=VERBOSE)  # run before defining LOGGER
LOGGER = logging.getLogger(LOGGING_NAME)  # define globally (used in train.py, val.py, detect.py, etc.)
if WINDOWS:  # emoji-safe logging
    LOGGER.addFilter(EmojiFilter())


def yaml_save(file='data.yaml', data=None):
    """
    Save YAML data to a file.

    Args:
        file (str, optional): File name. Default is 'data.yaml'.
        data (dict): Data to save in YAML format.

    Returns:
        (None): Data is saved to the specified file.
    """
    if data is None:
        data = {}
    file = Path(file)
    if not file.parent.exists():
        # Create parent directories if they don't exist
        file.parent.mkdir(parents=True, exist_ok=True)

    # Convert Path objects to strings
    for k, v in data.items():
        if isinstance(v, Path):
            data[k] = str(v)

    # Dump data to file in YAML format
    with open(file, 'w') as f:
        yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True)


def yaml_load(file='data.yaml', append_filename=False):
    """
    Load YAML data from a file.

    Args:
        file (str, optional): File name. Default is 'data.yaml'.
        append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False.

    Returns:
        (dict): YAML data and file name.
    """
    with open(file, errors='ignore', encoding='utf-8') as f:
        s = f.read()  # string

        # Remove special characters
        if not s.isprintable():
            s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s)

        # Add YAML filename to dict and return
        return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s)


def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
    """
    Pretty prints a yaml file or a yaml-formatted dictionary.

    Args:
        yaml_file: The file path of the yaml file or a yaml-formatted dictionary.

    Returns:
        None
    """
    yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
    dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
    LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}")


# Default configuration
DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH)
for k, v in DEFAULT_CFG_DICT.items():
    if isinstance(v, str) and v.lower() == 'none':
        DEFAULT_CFG_DICT[k] = None
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys()
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT)


def is_colab():
    """
    Check if the current script is running inside a Google Colab notebook.

    Returns:
        (bool): True if running inside a Colab notebook, False otherwise.
    """
    return 'COLAB_RELEASE_TAG' in os.environ or 'COLAB_BACKEND_VERSION' in os.environ


def is_kaggle():
    """
    Check if the current script is running inside a Kaggle kernel.

    Returns:
        (bool): True if running inside a Kaggle kernel, False otherwise.
    """
    return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'


def is_jupyter():
    """
    Check if the current script is running inside a Jupyter Notebook.
    Verified on Colab, Jupyterlab, Kaggle, Paperspace.

    Returns:
        (bool): True if running inside a Jupyter Notebook, False otherwise.
    """
    with contextlib.suppress(Exception):
        from IPython import get_ipython
        return get_ipython() is not None
    return False


def is_docker() -> bool:
    """
    Determine if the script is running inside a Docker container.

    Returns:
        (bool): True if the script is running inside a Docker container, False otherwise.
    """
    file = Path('/proc/self/cgroup')
    if file.exists():
        with open(file) as f:
            return 'docker' in f.read()
    else:
        return False


def is_online() -> bool:
    """
    Check internet connectivity by attempting to connect to a known online host.

    Returns:
        (bool): True if connection is successful, False otherwise.
    """
    import socket

    for host in '1.1.1.1', '8.8.8.8', '223.5.5.5':  # Cloudflare, Google, AliDNS:
        try:
            test_connection = socket.create_connection(address=(host, 53), timeout=2)
        except (socket.timeout, socket.gaierror, OSError):
            continue
        else:
            # If the connection was successful, close it to avoid a ResourceWarning
            test_connection.close()
            return True
    return False


ONLINE = is_online()


def is_pip_package(filepath: str = __name__) -> bool:
    """
    Determines if the file at the given filepath is part of a pip package.

    Args:
        filepath (str): The filepath to check.

    Returns:
        (bool): True if the file is part of a pip package, False otherwise.
    """
    import importlib.util

    # Get the spec for the module
    spec = importlib.util.find_spec(filepath)

    # Return whether the spec is not None and the origin is not None (indicating it is a package)
    return spec is not None and spec.origin is not None


def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
    """
    Check if a directory is writeable.

    Args:
        dir_path (str | Path): The path to the directory.

    Returns:
        (bool): True if the directory is writeable, False otherwise.
    """
    return os.access(str(dir_path), os.W_OK)


def is_pytest_running():
    """
    Determines whether pytest is currently running or not.

    Returns:
        (bool): True if pytest is running, False otherwise.
    """
    return ('PYTEST_CURRENT_TEST' in os.environ) or ('pytest' in sys.modules) or ('pytest' in Path(sys.argv[0]).stem)


def is_github_actions_ci() -> bool:
    """
    Determine if the current environment is a GitHub Actions CI Python runner.

    Returns:
        (bool): True if the current environment is a GitHub Actions CI Python runner, False otherwise.
    """
    return 'GITHUB_ACTIONS' in os.environ and 'RUNNER_OS' in os.environ and 'RUNNER_TOOL_CACHE' in os.environ


def is_git_dir():
    """
    Determines whether the current file is part of a git repository.
    If the current file is not part of a git repository, returns None.

    Returns:
        (bool): True if current file is part of a git repository.
    """
    return get_git_dir() is not None


def get_git_dir():
    """
    Determines whether the current file is part of a git repository and if so, returns the repository root directory.
    If the current file is not part of a git repository, returns None.

    Returns:
        (Path | None): Git root directory if found or None if not found.
    """
    for d in Path(__file__).parents:
        if (d / '.git').is_dir():
            return d
    return None  # no .git dir found


def get_git_origin_url():
    """
    Retrieves the origin URL of a git repository.

    Returns:
        (str | None): The origin URL of the git repository.
    """
    if is_git_dir():
        with contextlib.suppress(subprocess.CalledProcessError):
            origin = subprocess.check_output(['git', 'config', '--get', 'remote.origin.url'])
            return origin.decode().strip()
    return None  # if not git dir or on error


def get_git_branch():
    """
    Returns the current git branch name. If not in a git repository, returns None.

    Returns:
        (str | None): The current git branch name.
    """
    if is_git_dir():
        with contextlib.suppress(subprocess.CalledProcessError):
            origin = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
            return origin.decode().strip()
    return None  # if not git dir or on error


def get_default_args(func):
    """Returns a dictionary of default arguments for a function.

    Args:
        func (callable): The function to inspect.

    Returns:
        (dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter.
    """
    signature = inspect.signature(func)
    return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}


def get_user_config_dir(sub_dir='Ultralytics'):
    """
    Get the user config directory.

    Args:
        sub_dir (str): The name of the subdirectory to create.

    Returns:
        (Path): The path to the user config directory.
    """
    # Return the appropriate config directory for each operating system
    if WINDOWS:
        path = Path.home() / 'AppData' / 'Roaming' / sub_dir
    elif MACOS:  # macOS
        path = Path.home() / 'Library' / 'Application Support' / sub_dir
    elif LINUX:
        path = Path.home() / '.config' / sub_dir
    else:
        raise ValueError(f'Unsupported operating system: {platform.system()}')

    # GCP and AWS lambda fix, only /tmp is writeable
    if not is_dir_writeable(str(path.parent)):
        path = Path('/tmp') / sub_dir
        LOGGER.warning(f"WARNING ⚠️ user config directory is not writeable, defaulting to '{path}'.")

    # Create the subdirectory if it does not exist
    path.mkdir(parents=True, exist_ok=True)

    return path


USER_CONFIG_DIR = Path(os.getenv('YOLO_CONFIG_DIR', get_user_config_dir()))  # Ultralytics settings dir
SETTINGS_YAML = USER_CONFIG_DIR / 'settings.yaml'


def colorstr(*input):
    """Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')."""
    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
    colors = {
        'black': '\033[30m',  # basic colors
        'red': '\033[31m',
        'green': '\033[32m',
        'yellow': '\033[33m',
        'blue': '\033[34m',
        'magenta': '\033[35m',
        'cyan': '\033[36m',
        'white': '\033[37m',
        'bright_black': '\033[90m',  # bright colors
        'bright_red': '\033[91m',
        'bright_green': '\033[92m',
        'bright_yellow': '\033[93m',
        'bright_blue': '\033[94m',
        'bright_magenta': '\033[95m',
        'bright_cyan': '\033[96m',
        'bright_white': '\033[97m',
        'end': '\033[0m',  # misc
        'bold': '\033[1m',
        'underline': '\033[4m'}
    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']


class TryExcept(contextlib.ContextDecorator):
    """YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager."""

    def __init__(self, msg='', verbose=True):
        """Initialize TryExcept class with optional message and verbosity settings."""
        self.msg = msg
        self.verbose = verbose

    def __enter__(self):
        """Executes when entering TryExcept context, initializes instance."""
        pass

    def __exit__(self, exc_type, value, traceback):
        """Defines behavior when exiting a 'with' block, prints error message if necessary."""
        if self.verbose and value:
            print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
        return True


def threaded(func):
    """Multi-threads a target function and returns thread. Usage: @threaded decorator."""

    def wrapper(*args, **kwargs):
        """Multi-threads a given function and returns the thread."""
        thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
        thread.start()
        return thread

    return wrapper


def set_sentry():
    """
    Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
    sync=True in settings. Run 'yolo settings' to see and update settings YAML file.

    Conditions required to send errors (ALL conditions must be met or no errors will be reported):
        - sentry_sdk package is installed
        - sync=True in YOLO settings
        - pytest is not running
        - running in a pip package installation
        - running in a non-git directory
        - running with rank -1 or 0
        - online environment
        - CLI used to run package (checked with 'yolo' as the name of the main CLI command)

    The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
    exceptions and to exclude events with 'out of memory' in their exception message.

    Additionally, the function sets custom tags and user information for Sentry events.
    """

    def before_send(event, hint):
        """
        Modify the event before sending it to Sentry based on specific exception types and messages.

        Args:
            event (dict): The event dictionary containing information about the error.
            hint (dict): A dictionary containing additional information about the error.

        Returns:
            dict: The modified event or None if the event should not be sent to Sentry.
        """
        if 'exc_info' in hint:
            exc_type, exc_value, tb = hint['exc_info']
            if exc_type in (KeyboardInterrupt, FileNotFoundError) \
                    or 'out of memory' in str(exc_value):
                return None  # do not send event

        event['tags'] = {
            'sys_argv': sys.argv[0],
            'sys_argv_name': Path(sys.argv[0]).name,
            'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other',
            'os': ENVIRONMENT}
        return event

    if SETTINGS['sync'] and \
            RANK in (-1, 0) and \
            Path(sys.argv[0]).name == 'yolo' and \
            not TESTS_RUNNING and \
            ONLINE and \
            is_pip_package() and \
            not is_git_dir():

        # If sentry_sdk package is not installed then return and do not use Sentry
        try:
            import sentry_sdk  # noqa
        except ImportError:
            return

        sentry_sdk.init(
            dsn='https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016',
            debug=False,
            traces_sample_rate=1.0,
            release=__version__,
            environment='production',  # 'dev' or 'production'
            before_send=before_send,
            ignore_errors=[KeyboardInterrupt, FileNotFoundError])
        sentry_sdk.set_user({'id': SETTINGS['uuid']})  # SHA-256 anonymized UUID hash

        # Disable all sentry logging
        for logger in 'sentry_sdk', 'sentry_sdk.errors':
            logging.getLogger(logger).setLevel(logging.CRITICAL)


def get_settings(file=SETTINGS_YAML, version='0.0.3'):
    """
    Loads a global Ultralytics settings YAML file or creates one with default values if it does not exist.

    Args:
        file (Path): Path to the Ultralytics settings YAML file. Defaults to 'settings.yaml' in the USER_CONFIG_DIR.
        version (str): Settings version. If min settings version not met, new default settings will be saved.

    Returns:
        (dict): Dictionary of settings key-value pairs.
    """
    import hashlib

    from ultralytics.yolo.utils.checks import check_version
    from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first

    git_dir = get_git_dir()
    root = git_dir or Path()
    datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve()
    defaults = {
        'datasets_dir': str(datasets_root / 'datasets'),  # default datasets directory.
        'weights_dir': str(root / 'weights'),  # default weights directory.
        'runs_dir': str(root / 'runs'),  # default runs directory.
        'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),  # SHA-256 anonymized UUID hash
        'sync': True,  # sync analytics to help with YOLO development
        'api_key': '',  # Ultralytics HUB API key (https://hub.ultralytics.com/)
        'settings_version': version}  # Ultralytics settings version

    with torch_distributed_zero_first(RANK):
        if not file.exists():
            yaml_save(file, defaults)
        settings = yaml_load(file)

        # Check that settings keys and types match defaults
        correct = \
            settings \
            and settings.keys() == defaults.keys() \
            and all(type(a) == type(b) for a, b in zip(settings.values(), defaults.values())) \
            and check_version(settings['settings_version'], version)
        if not correct:
            LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. This is normal and may be due to a '
                           'recent ultralytics package update, but may have overwritten previous settings. '
                           f"\nView and update settings with 'yolo settings' or at '{file}'")
            settings = defaults  # merge **defaults with **settings (prefer **settings)
            yaml_save(file, settings)  # save updated defaults

        return settings


def set_settings(kwargs, file=SETTINGS_YAML):
    """
    Function that runs on a first-time ultralytics package installation to set up global settings and create necessary
    directories.
    """
    SETTINGS.update(kwargs)
    yaml_save(file, SETTINGS)


def deprecation_warn(arg, new_arg, version=None):
    """Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument."""
    if not version:
        version = float(__version__[:3]) + 0.2  # deprecate after 2nd major release
    LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. "
                   f"Please use '{new_arg}' instead.")


def clean_url(url):
    """Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt."""
    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
    return urllib.parse.unquote(url).split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth


def url2file(url):
    """Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt."""
    return Path(clean_url(url)).name


# Run below code on yolo/utils init ------------------------------------------------------------------------------------

# Check first-install steps
PREFIX = colorstr('Ultralytics: ')
SETTINGS = get_settings()
DATASETS_DIR = Path(SETTINGS['datasets_dir'])  # global datasets directory
ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \
    'Docker' if is_docker() else platform.system()
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
set_sentry()

# Apply monkey patches if the script is being run from within the parent directory of the script's location
from .patches import imread, imshow, imwrite

# torch.save = torch_save
if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename:
    cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow