File size: 2,499 Bytes
bf0b5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Ultralytics YOLO πŸš€, AGPL-3.0 license
from copy import copy

from ultralytics.nn.tasks import SegmentationModel
from ultralytics.yolo import v8
from ultralytics.yolo.utils import DEFAULT_CFG, RANK
from ultralytics.yolo.utils.plotting import plot_images, plot_results


# BaseTrainer python usage
class SegmentationTrainer(v8.detect.DetectionTrainer):

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize a SegmentationTrainer object with given arguments."""
        if overrides is None:
            overrides = {}
        overrides['task'] = 'segment'
        super().__init__(cfg, overrides, _callbacks)

    def get_model(self, cfg=None, weights=None, verbose=True):
        """Return SegmentationModel initialized with specified config and weights."""
        model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)

        return model

    def get_validator(self):
        """Return an instance of SegmentationValidator for validation of YOLO model."""
        self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss'
        return v8.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

    def plot_training_samples(self, batch, ni):
        """Creates a plot of training sample images with labels and box coordinates."""
        plot_images(batch['img'],
                    batch['batch_idx'],
                    batch['cls'].squeeze(-1),
                    batch['bboxes'],
                    batch['masks'],
                    paths=batch['im_file'],
                    fname=self.save_dir / f'train_batch{ni}.jpg',
                    on_plot=self.on_plot)

    def plot_metrics(self):
        """Plots training/val metrics."""
        plot_results(file=self.csv, segment=True, on_plot=self.on_plot)  # save results.png


def train(cfg=DEFAULT_CFG, use_python=False):
    """Train a YOLO segmentation model based on passed arguments."""
    model = cfg.model or 'yolov8n-seg.pt'
    data = cfg.data or 'coco128-seg.yaml'  # or yolo.ClassificationDataset("mnist")
    device = cfg.device if cfg.device is not None else ''

    args = dict(model=model, data=data, device=device)
    if use_python:
        from ultralytics import YOLO
        YOLO(model).train(**args)
    else:
        trainer = SegmentationTrainer(overrides=args)
        trainer.train()


if __name__ == '__main__':
    train()