Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) | |
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- | |
# Example usage: yolo train data=xView.yaml | |
# parent | |
# βββ ultralytics | |
# βββ datasets | |
# βββ xView β downloads here (20.7 GB) | |
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | |
path: ../datasets/xView # dataset root dir | |
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images | |
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images | |
# Classes | |
names: | |
0: Fixed-wing Aircraft | |
1: Small Aircraft | |
2: Cargo Plane | |
3: Helicopter | |
4: Passenger Vehicle | |
5: Small Car | |
6: Bus | |
7: Pickup Truck | |
8: Utility Truck | |
9: Truck | |
10: Cargo Truck | |
11: Truck w/Box | |
12: Truck Tractor | |
13: Trailer | |
14: Truck w/Flatbed | |
15: Truck w/Liquid | |
16: Crane Truck | |
17: Railway Vehicle | |
18: Passenger Car | |
19: Cargo Car | |
20: Flat Car | |
21: Tank car | |
22: Locomotive | |
23: Maritime Vessel | |
24: Motorboat | |
25: Sailboat | |
26: Tugboat | |
27: Barge | |
28: Fishing Vessel | |
29: Ferry | |
30: Yacht | |
31: Container Ship | |
32: Oil Tanker | |
33: Engineering Vehicle | |
34: Tower crane | |
35: Container Crane | |
36: Reach Stacker | |
37: Straddle Carrier | |
38: Mobile Crane | |
39: Dump Truck | |
40: Haul Truck | |
41: Scraper/Tractor | |
42: Front loader/Bulldozer | |
43: Excavator | |
44: Cement Mixer | |
45: Ground Grader | |
46: Hut/Tent | |
47: Shed | |
48: Building | |
49: Aircraft Hangar | |
50: Damaged Building | |
51: Facility | |
52: Construction Site | |
53: Vehicle Lot | |
54: Helipad | |
55: Storage Tank | |
56: Shipping container lot | |
57: Shipping Container | |
58: Pylon | |
59: Tower | |
# Download script/URL (optional) --------------------------------------------------------------------------------------- | |
download: | | |
import json | |
import os | |
from pathlib import Path | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from ultralytics.yolo.data.dataloaders.v5loader import autosplit | |
from ultralytics.yolo.utils.ops import xyxy2xywhn | |
def convert_labels(fname=Path('xView/xView_train.geojson')): | |
# Convert xView geoJSON labels to YOLO format | |
path = fname.parent | |
with open(fname) as f: | |
print(f'Loading {fname}...') | |
data = json.load(f) | |
# Make dirs | |
labels = Path(path / 'labels' / 'train') | |
os.system(f'rm -rf {labels}') | |
labels.mkdir(parents=True, exist_ok=True) | |
# xView classes 11-94 to 0-59 | |
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, | |
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, | |
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, | |
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] | |
shapes = {} | |
for feature in tqdm(data['features'], desc=f'Converting {fname}'): | |
p = feature['properties'] | |
if p['bounds_imcoords']: | |
id = p['image_id'] | |
file = path / 'train_images' / id | |
if file.exists(): # 1395.tif missing | |
try: | |
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) | |
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' | |
cls = p['type_id'] | |
cls = xview_class2index[int(cls)] # xView class to 0-60 | |
assert 59 >= cls >= 0, f'incorrect class index {cls}' | |
# Write YOLO label | |
if id not in shapes: | |
shapes[id] = Image.open(file).size | |
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) | |
with open((labels / id).with_suffix('.txt'), 'a') as f: | |
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt | |
except Exception as e: | |
print(f'WARNING: skipping one label for {file}: {e}') | |
# Download manually from https://challenge.xviewdataset.org | |
dir = Path(yaml['path']) # dataset root dir | |
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels | |
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images | |
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) | |
# download(urls, dir=dir) | |
# Convert labels | |
convert_labels(dir / 'xView_train.geojson') | |
# Move images | |
images = Path(dir / 'images') | |
images.mkdir(parents=True, exist_ok=True) | |
Path(dir / 'train_images').rename(dir / 'images' / 'train') | |
Path(dir / 'val_images').rename(dir / 'images' / 'val') | |
# Split | |
autosplit(dir / 'images' / 'train') | |