Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
""" | |
Transformer modules | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.init import constant_, xavier_uniform_ | |
from .conv import Conv | |
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch | |
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI', | |
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP') | |
class TransformerEncoderLayer(nn.Module): | |
"""Transformer Encoder.""" | |
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False): | |
super().__init__() | |
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True) | |
# Implementation of Feedforward model | |
self.fc1 = nn.Linear(c1, cm) | |
self.fc2 = nn.Linear(cm, c1) | |
self.norm1 = nn.LayerNorm(c1) | |
self.norm2 = nn.LayerNorm(c1) | |
self.dropout = nn.Dropout(dropout) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.act = act | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos=None): | |
"""Add position embeddings if given.""" | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None): | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.fc2(self.dropout(self.act(self.fc1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None): | |
src2 = self.norm1(src) | |
q = k = self.with_pos_embed(src2, pos) | |
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src2 = self.norm2(src) | |
src2 = self.fc2(self.dropout(self.act(self.fc1(src2)))) | |
src = src + self.dropout2(src2) | |
return src | |
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None): | |
"""Forward propagates the input through the encoder module.""" | |
if self.normalize_before: | |
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
class AIFI(TransformerEncoderLayer): | |
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False): | |
super().__init__(c1, cm, num_heads, dropout, act, normalize_before) | |
def forward(self, x): | |
c, h, w = x.shape[1:] | |
pos_embed = self.build_2d_sincos_position_embedding(w, h, c) | |
# flatten [B, C, H, W] to [B, HxW, C] | |
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype)) | |
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous() | |
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.): | |
grid_w = torch.arange(int(w), dtype=torch.float32) | |
grid_h = torch.arange(int(h), dtype=torch.float32) | |
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij') | |
assert embed_dim % 4 == 0, \ | |
'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' | |
pos_dim = embed_dim // 4 | |
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim | |
omega = 1. / (temperature ** omega) | |
out_w = grid_w.flatten()[..., None] @ omega[None] | |
out_h = grid_h.flatten()[..., None] @ omega[None] | |
return torch.concat([torch.sin(out_w), torch.cos(out_w), | |
torch.sin(out_h), torch.cos(out_h)], axis=1)[None, :, :] | |
class TransformerLayer(nn.Module): | |
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance).""" | |
def __init__(self, c, num_heads): | |
"""Initializes a self-attention mechanism using linear transformations and multi-head attention.""" | |
super().__init__() | |
self.q = nn.Linear(c, c, bias=False) | |
self.k = nn.Linear(c, c, bias=False) | |
self.v = nn.Linear(c, c, bias=False) | |
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) | |
self.fc1 = nn.Linear(c, c, bias=False) | |
self.fc2 = nn.Linear(c, c, bias=False) | |
def forward(self, x): | |
"""Apply a transformer block to the input x and return the output.""" | |
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x | |
x = self.fc2(self.fc1(x)) + x | |
return x | |
class TransformerBlock(nn.Module): | |
"""Vision Transformer https://arxiv.org/abs/2010.11929.""" | |
def __init__(self, c1, c2, num_heads, num_layers): | |
"""Initialize a Transformer module with position embedding and specified number of heads and layers.""" | |
super().__init__() | |
self.conv = None | |
if c1 != c2: | |
self.conv = Conv(c1, c2) | |
self.linear = nn.Linear(c2, c2) # learnable position embedding | |
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) | |
self.c2 = c2 | |
def forward(self, x): | |
"""Forward propagates the input through the bottleneck module.""" | |
if self.conv is not None: | |
x = self.conv(x) | |
b, _, w, h = x.shape | |
p = x.flatten(2).permute(2, 0, 1) | |
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) | |
class MLPBlock(nn.Module): | |
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU): | |
super().__init__() | |
self.lin1 = nn.Linear(embedding_dim, mlp_dim) | |
self.lin2 = nn.Linear(mlp_dim, embedding_dim) | |
self.act = act() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.lin2(self.act(self.lin1(x))) | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa | |
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa | |
class LayerNorm2d(nn.Module): | |
def __init__(self, num_channels, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
self.bias = nn.Parameter(torch.zeros(num_channels)) | |
self.eps = eps | |
def forward(self, x): | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class MSDeformAttn(nn.Module): | |
""" | |
Original Multi-Scale Deformable Attention Module. | |
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py | |
""" | |
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): | |
super().__init__() | |
if d_model % n_heads != 0: | |
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}') | |
_d_per_head = d_model // n_heads | |
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation | |
assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`' | |
self.im2col_step = 64 | |
self.d_model = d_model | |
self.n_levels = n_levels | |
self.n_heads = n_heads | |
self.n_points = n_points | |
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) | |
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) | |
self.value_proj = nn.Linear(d_model, d_model) | |
self.output_proj = nn.Linear(d_model, d_model) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
constant_(self.sampling_offsets.weight.data, 0.) | |
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) | |
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) | |
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat( | |
1, self.n_levels, self.n_points, 1) | |
for i in range(self.n_points): | |
grid_init[:, :, i, :] *= i + 1 | |
with torch.no_grad(): | |
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) | |
constant_(self.attention_weights.weight.data, 0.) | |
constant_(self.attention_weights.bias.data, 0.) | |
xavier_uniform_(self.value_proj.weight.data) | |
constant_(self.value_proj.bias.data, 0.) | |
xavier_uniform_(self.output_proj.weight.data) | |
constant_(self.output_proj.bias.data, 0.) | |
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None): | |
""" | |
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py | |
Args: | |
query (torch.Tensor): [bs, query_length, C] | |
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), | |
bottom-right (1, 1), including padding area | |
value (torch.Tensor): [bs, value_length, C] | |
value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] | |
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements | |
Returns: | |
output (Tensor): [bs, Length_{query}, C] | |
""" | |
bs, len_q = query.shape[:2] | |
len_v = value.shape[1] | |
assert sum(s[0] * s[1] for s in value_shapes) == len_v | |
value = self.value_proj(value) | |
if value_mask is not None: | |
value = value.masked_fill(value_mask[..., None], float(0)) | |
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads) | |
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2) | |
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points) | |
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points) | |
# N, Len_q, n_heads, n_levels, n_points, 2 | |
num_points = refer_bbox.shape[-1] | |
if num_points == 2: | |
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1) | |
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :] | |
sampling_locations = refer_bbox[:, :, None, :, None, :] + add | |
elif num_points == 4: | |
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5 | |
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add | |
else: | |
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.') | |
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights) | |
output = self.output_proj(output) | |
return output | |
class DeformableTransformerDecoderLayer(nn.Module): | |
""" | |
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py | |
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py | |
""" | |
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4): | |
super().__init__() | |
# self attention | |
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) | |
self.dropout1 = nn.Dropout(dropout) | |
self.norm1 = nn.LayerNorm(d_model) | |
# cross attention | |
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) | |
self.dropout2 = nn.Dropout(dropout) | |
self.norm2 = nn.LayerNorm(d_model) | |
# ffn | |
self.linear1 = nn.Linear(d_model, d_ffn) | |
self.act = act | |
self.dropout3 = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(d_ffn, d_model) | |
self.dropout4 = nn.Dropout(dropout) | |
self.norm3 = nn.LayerNorm(d_model) | |
def with_pos_embed(tensor, pos): | |
return tensor if pos is None else tensor + pos | |
def forward_ffn(self, tgt): | |
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt)))) | |
tgt = tgt + self.dropout4(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None): | |
# self attention | |
q = k = self.with_pos_embed(embed, query_pos) | |
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), | |
attn_mask=attn_mask)[0].transpose(0, 1) | |
embed = embed + self.dropout1(tgt) | |
embed = self.norm1(embed) | |
# cross attention | |
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, | |
padding_mask) | |
embed = embed + self.dropout2(tgt) | |
embed = self.norm2(embed) | |
# ffn | |
embed = self.forward_ffn(embed) | |
return embed | |
class DeformableTransformerDecoder(nn.Module): | |
""" | |
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py | |
""" | |
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1): | |
super().__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.hidden_dim = hidden_dim | |
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx | |
def forward( | |
self, | |
embed, # decoder embeddings | |
refer_bbox, # anchor | |
feats, # image features | |
shapes, # feature shapes | |
bbox_head, | |
score_head, | |
pos_mlp, | |
attn_mask=None, | |
padding_mask=None): | |
output = embed | |
dec_bboxes = [] | |
dec_cls = [] | |
last_refined_bbox = None | |
refer_bbox = refer_bbox.sigmoid() | |
for i, layer in enumerate(self.layers): | |
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox)) | |
# refine bboxes, (bs, num_queries+num_denoising, 4) | |
refined_bbox = torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(refer_bbox)) | |
if self.training: | |
dec_cls.append(score_head[i](output)) | |
if i == 0: | |
dec_bboxes.append(refined_bbox) | |
else: | |
dec_bboxes.append(torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(last_refined_bbox))) | |
elif i == self.eval_idx: | |
dec_cls.append(score_head[i](output)) | |
dec_bboxes.append(refined_bbox) | |
break | |
last_refined_bbox = refined_bbox | |
refer_bbox = refined_bbox.detach() if self.training else refined_bbox | |
return torch.stack(dec_bboxes), torch.stack(dec_cls) | |