Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from copy import copy | |
import torch | |
from ultralytics.nn.tasks import RTDETRDetectionModel | |
from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr | |
from ultralytics.yolo.v8.detect import DetectionTrainer | |
from .val import RTDETRDataset, RTDETRValidator | |
class RTDETRTrainer(DetectionTrainer): | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Return a YOLO detection model.""" | |
model = RTDETRDetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
return model | |
def build_dataset(self, img_path, mode='val', batch=None): | |
"""Build RTDETR Dataset | |
Args: | |
img_path (str): Path to the folder containing images. | |
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. | |
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. | |
""" | |
return RTDETRDataset( | |
img_path=img_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch, | |
augment=mode == 'train', # no augmentation | |
hyp=self.args, | |
rect=False, # no rect | |
cache=self.args.cache or None, | |
prefix=colorstr(f'{mode}: '), | |
data=self.data) | |
def get_validator(self): | |
"""Returns a DetectionValidator for RTDETR model validation.""" | |
self.loss_names = 'giou_loss', 'cls_loss', 'l1_loss' | |
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) | |
def preprocess_batch(self, batch): | |
"""Preprocesses a batch of images by scaling and converting to float.""" | |
batch = super().preprocess_batch(batch) | |
bs = len(batch['img']) | |
batch_idx = batch['batch_idx'] | |
gt_bbox, gt_class = [], [] | |
for i in range(bs): | |
gt_bbox.append(batch['bboxes'][batch_idx == i].to(batch_idx.device)) | |
gt_class.append(batch['cls'][batch_idx == i].to(device=batch_idx.device, dtype=torch.long)) | |
return batch | |
def train(cfg=DEFAULT_CFG, use_python=False): | |
"""Train and optimize RTDETR model given training data and device.""" | |
model = 'rtdetr-l.yaml' | |
data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist") | |
device = cfg.device if cfg.device is not None else '' | |
# NOTE: F.grid_sample which is in rt-detr does not support deterministic=True | |
# NOTE: amp training causes nan outputs and end with error while doing bipartite graph matching | |
args = dict(model=model, | |
data=data, | |
device=device, | |
imgsz=640, | |
exist_ok=True, | |
batch=4, | |
deterministic=False, | |
amp=False) | |
trainer = RTDETRTrainer(overrides=args) | |
trainer.train() | |
if __name__ == '__main__': | |
train() | |