HimankJ's picture
Upload 250 files
bf0b5b3 verified
raw
history blame
2.31 kB
# Ultralytics YOLO πŸš€, AGPL-3.0 license
from functools import partial
import torch
from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
from .trackers import BOTSORT, BYTETracker
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
def on_predict_start(predictor, persist=False):
"""
Initialize trackers for object tracking during prediction.
Args:
predictor (object): The predictor object to initialize trackers for.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
Raises:
AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'.
"""
if hasattr(predictor, 'trackers') and persist:
return
tracker = check_yaml(predictor.args.tracker)
cfg = IterableSimpleNamespace(**yaml_load(tracker))
assert cfg.tracker_type in ['bytetrack', 'botsort'], \
f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'"
trackers = []
for _ in range(predictor.dataset.bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
predictor.trackers = trackers
def on_predict_postprocess_end(predictor):
"""Postprocess detected boxes and update with object tracking."""
bs = predictor.dataset.bs
im0s = predictor.batch[1]
for i in range(bs):
det = predictor.results[i].boxes.cpu().numpy()
if len(det) == 0:
continue
tracks = predictor.trackers[i].update(det, im0s[i])
if len(tracks) == 0:
continue
idx = tracks[:, -1].astype(int)
predictor.results[i] = predictor.results[i][idx]
predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))
def register_tracker(model, persist):
"""
Register tracking callbacks to the model for object tracking during prediction.
Args:
model (object): The model object to register tracking callbacks for.
persist (bool): Whether to persist the trackers if they already exist.
"""
model.add_callback('on_predict_start', partial(on_predict_start, persist=persist))
model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end)