Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from collections import deque | |
import numpy as np | |
from ..utils import matching | |
from ..utils.gmc import GMC | |
from ..utils.kalman_filter import KalmanFilterXYWH | |
from .basetrack import TrackState | |
from .byte_tracker import BYTETracker, STrack | |
class BOTrack(STrack): | |
shared_kalman = KalmanFilterXYWH() | |
def __init__(self, tlwh, score, cls, feat=None, feat_history=50): | |
"""Initialize YOLOv8 object with temporal parameters, such as feature history, alpha and current features.""" | |
super().__init__(tlwh, score, cls) | |
self.smooth_feat = None | |
self.curr_feat = None | |
if feat is not None: | |
self.update_features(feat) | |
self.features = deque([], maxlen=feat_history) | |
self.alpha = 0.9 | |
def update_features(self, feat): | |
"""Update features vector and smooth it using exponential moving average.""" | |
feat /= np.linalg.norm(feat) | |
self.curr_feat = feat | |
if self.smooth_feat is None: | |
self.smooth_feat = feat | |
else: | |
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat | |
self.features.append(feat) | |
self.smooth_feat /= np.linalg.norm(self.smooth_feat) | |
def predict(self): | |
"""Predicts the mean and covariance using Kalman filter.""" | |
mean_state = self.mean.copy() | |
if self.state != TrackState.Tracked: | |
mean_state[6] = 0 | |
mean_state[7] = 0 | |
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
def re_activate(self, new_track, frame_id, new_id=False): | |
"""Reactivates a track with updated features and optionally assigns a new ID.""" | |
if new_track.curr_feat is not None: | |
self.update_features(new_track.curr_feat) | |
super().re_activate(new_track, frame_id, new_id) | |
def update(self, new_track, frame_id): | |
"""Update the YOLOv8 instance with new track and frame ID.""" | |
if new_track.curr_feat is not None: | |
self.update_features(new_track.curr_feat) | |
super().update(new_track, frame_id) | |
def tlwh(self): | |
"""Get current position in bounding box format `(top left x, top left y, | |
width, height)`. | |
""" | |
if self.mean is None: | |
return self._tlwh.copy() | |
ret = self.mean[:4].copy() | |
ret[:2] -= ret[2:] / 2 | |
return ret | |
def multi_predict(stracks): | |
"""Predicts the mean and covariance of multiple object tracks using shared Kalman filter.""" | |
if len(stracks) <= 0: | |
return | |
multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
multi_covariance = np.asarray([st.covariance for st in stracks]) | |
for i, st in enumerate(stracks): | |
if st.state != TrackState.Tracked: | |
multi_mean[i][6] = 0 | |
multi_mean[i][7] = 0 | |
multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance) | |
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
stracks[i].mean = mean | |
stracks[i].covariance = cov | |
def convert_coords(self, tlwh): | |
"""Converts Top-Left-Width-Height bounding box coordinates to X-Y-Width-Height format.""" | |
return self.tlwh_to_xywh(tlwh) | |
def tlwh_to_xywh(tlwh): | |
"""Convert bounding box to format `(center x, center y, width, | |
height)`. | |
""" | |
ret = np.asarray(tlwh).copy() | |
ret[:2] += ret[2:] / 2 | |
return ret | |
class BOTSORT(BYTETracker): | |
def __init__(self, args, frame_rate=30): | |
"""Initialize YOLOv8 object with ReID module and GMC algorithm.""" | |
super().__init__(args, frame_rate) | |
# ReID module | |
self.proximity_thresh = args.proximity_thresh | |
self.appearance_thresh = args.appearance_thresh | |
if args.with_reid: | |
# Haven't supported BoT-SORT(reid) yet | |
self.encoder = None | |
# self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation]) | |
self.gmc = GMC(method=args.cmc_method) | |
def get_kalmanfilter(self): | |
"""Returns an instance of KalmanFilterXYWH for object tracking.""" | |
return KalmanFilterXYWH() | |
def init_track(self, dets, scores, cls, img=None): | |
"""Initialize track with detections, scores, and classes.""" | |
if len(dets) == 0: | |
return [] | |
if self.args.with_reid and self.encoder is not None: | |
features_keep = self.encoder.inference(img, dets) | |
return [BOTrack(xyxy, s, c, f) for (xyxy, s, c, f) in zip(dets, scores, cls, features_keep)] # detections | |
else: | |
return [BOTrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] # detections | |
def get_dists(self, tracks, detections): | |
"""Get distances between tracks and detections using IoU and (optionally) ReID embeddings.""" | |
dists = matching.iou_distance(tracks, detections) | |
dists_mask = (dists > self.proximity_thresh) | |
# TODO: mot20 | |
# if not self.args.mot20: | |
dists = matching.fuse_score(dists, detections) | |
if self.args.with_reid and self.encoder is not None: | |
emb_dists = matching.embedding_distance(tracks, detections) / 2.0 | |
emb_dists[emb_dists > self.appearance_thresh] = 1.0 | |
emb_dists[dists_mask] = 1.0 | |
dists = np.minimum(dists, emb_dists) | |
return dists | |
def multi_predict(self, tracks): | |
"""Predict and track multiple objects with YOLOv8 model.""" | |
BOTrack.multi_predict(tracks) | |