Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from ultralytics import YOLO | |
from ultralytics.vit.sam import PromptPredictor, build_sam | |
from ultralytics.yolo.utils.torch_utils import select_device | |
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None): | |
""" | |
Automatically annotates images using a YOLO object detection model and a SAM segmentation model. | |
Args: | |
data (str): Path to a folder containing images to be annotated. | |
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | |
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. | |
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | |
output_dir (str | None | optional): Directory to save the annotated results. | |
Defaults to a 'labels' folder in the same directory as 'data'. | |
""" | |
device = select_device(device) | |
det_model = YOLO(det_model) | |
sam_model = build_sam(sam_model) | |
det_model.to(device) | |
sam_model.to(device) | |
if not output_dir: | |
output_dir = Path(str(data)).parent / 'labels' | |
Path(output_dir).mkdir(exist_ok=True, parents=True) | |
prompt_predictor = PromptPredictor(sam_model) | |
det_results = det_model(data, stream=True) | |
for result in det_results: | |
boxes = result.boxes.xyxy # Boxes object for bbox outputs | |
class_ids = result.boxes.cls.int().tolist() # noqa | |
if len(class_ids): | |
prompt_predictor.set_image(result.orig_img) | |
masks, _, _ = prompt_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]), | |
multimask_output=False, | |
) | |
result.update(masks=masks.squeeze(1)) | |
segments = result.masks.xyn # noqa | |
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f: | |
for i in range(len(segments)): | |
s = segments[i] | |
if len(s) == 0: | |
continue | |
segment = map(str, segments[i].reshape(-1).tolist()) | |
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n') | |