Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from collections import abc | |
from itertools import repeat | |
from numbers import Number | |
from typing import List | |
import numpy as np | |
from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh | |
def _ntuple(n): | |
"""From PyTorch internals.""" | |
def parse(x): | |
"""Parse bounding boxes format between XYWH and LTWH.""" | |
return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n)) | |
return parse | |
to_4tuple = _ntuple(4) | |
# `xyxy` means left top and right bottom | |
# `xywh` means center x, center y and width, height(yolo format) | |
# `ltwh` means left top and width, height(coco format) | |
_formats = ['xyxy', 'xywh', 'ltwh'] | |
__all__ = 'Bboxes', # tuple or list | |
class Bboxes: | |
"""Now only numpy is supported.""" | |
def __init__(self, bboxes, format='xyxy') -> None: | |
assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}' | |
bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes | |
assert bboxes.ndim == 2 | |
assert bboxes.shape[1] == 4 | |
self.bboxes = bboxes | |
self.format = format | |
# self.normalized = normalized | |
# def convert(self, format): | |
# assert format in _formats | |
# if self.format == format: | |
# bboxes = self.bboxes | |
# elif self.format == "xyxy": | |
# if format == "xywh": | |
# bboxes = xyxy2xywh(self.bboxes) | |
# else: | |
# bboxes = xyxy2ltwh(self.bboxes) | |
# elif self.format == "xywh": | |
# if format == "xyxy": | |
# bboxes = xywh2xyxy(self.bboxes) | |
# else: | |
# bboxes = xywh2ltwh(self.bboxes) | |
# else: | |
# if format == "xyxy": | |
# bboxes = ltwh2xyxy(self.bboxes) | |
# else: | |
# bboxes = ltwh2xywh(self.bboxes) | |
# | |
# return Bboxes(bboxes, format) | |
def convert(self, format): | |
"""Converts bounding box format from one type to another.""" | |
assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}' | |
if self.format == format: | |
return | |
elif self.format == 'xyxy': | |
bboxes = xyxy2xywh(self.bboxes) if format == 'xywh' else xyxy2ltwh(self.bboxes) | |
elif self.format == 'xywh': | |
bboxes = xywh2xyxy(self.bboxes) if format == 'xyxy' else xywh2ltwh(self.bboxes) | |
else: | |
bboxes = ltwh2xyxy(self.bboxes) if format == 'xyxy' else ltwh2xywh(self.bboxes) | |
self.bboxes = bboxes | |
self.format = format | |
def areas(self): | |
"""Return box areas.""" | |
self.convert('xyxy') | |
return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1]) | |
# def denormalize(self, w, h): | |
# if not self.normalized: | |
# return | |
# assert (self.bboxes <= 1.0).all() | |
# self.bboxes[:, 0::2] *= w | |
# self.bboxes[:, 1::2] *= h | |
# self.normalized = False | |
# | |
# def normalize(self, w, h): | |
# if self.normalized: | |
# return | |
# assert (self.bboxes > 1.0).any() | |
# self.bboxes[:, 0::2] /= w | |
# self.bboxes[:, 1::2] /= h | |
# self.normalized = True | |
def mul(self, scale): | |
""" | |
Args: | |
scale (tuple | list | int): the scale for four coords. | |
""" | |
if isinstance(scale, Number): | |
scale = to_4tuple(scale) | |
assert isinstance(scale, (tuple, list)) | |
assert len(scale) == 4 | |
self.bboxes[:, 0] *= scale[0] | |
self.bboxes[:, 1] *= scale[1] | |
self.bboxes[:, 2] *= scale[2] | |
self.bboxes[:, 3] *= scale[3] | |
def add(self, offset): | |
""" | |
Args: | |
offset (tuple | list | int): the offset for four coords. | |
""" | |
if isinstance(offset, Number): | |
offset = to_4tuple(offset) | |
assert isinstance(offset, (tuple, list)) | |
assert len(offset) == 4 | |
self.bboxes[:, 0] += offset[0] | |
self.bboxes[:, 1] += offset[1] | |
self.bboxes[:, 2] += offset[2] | |
self.bboxes[:, 3] += offset[3] | |
def __len__(self): | |
"""Return the number of boxes.""" | |
return len(self.bboxes) | |
def concatenate(cls, boxes_list: List['Bboxes'], axis=0) -> 'Bboxes': | |
""" | |
Concatenate a list of Bboxes objects into a single Bboxes object. | |
Args: | |
boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate. | |
axis (int, optional): The axis along which to concatenate the bounding boxes. | |
Defaults to 0. | |
Returns: | |
Bboxes: A new Bboxes object containing the concatenated bounding boxes. | |
Note: | |
The input should be a list or tuple of Bboxes objects. | |
""" | |
assert isinstance(boxes_list, (list, tuple)) | |
if not boxes_list: | |
return cls(np.empty(0)) | |
assert all(isinstance(box, Bboxes) for box in boxes_list) | |
if len(boxes_list) == 1: | |
return boxes_list[0] | |
return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis)) | |
def __getitem__(self, index) -> 'Bboxes': | |
""" | |
Retrieve a specific bounding box or a set of bounding boxes using indexing. | |
Args: | |
index (int, slice, or np.ndarray): The index, slice, or boolean array to select | |
the desired bounding boxes. | |
Returns: | |
Bboxes: A new Bboxes object containing the selected bounding boxes. | |
Raises: | |
AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix. | |
Note: | |
When using boolean indexing, make sure to provide a boolean array with the same | |
length as the number of bounding boxes. | |
""" | |
if isinstance(index, int): | |
return Bboxes(self.bboxes[index].view(1, -1)) | |
b = self.bboxes[index] | |
assert b.ndim == 2, f'Indexing on Bboxes with {index} failed to return a matrix!' | |
return Bboxes(b) | |
class Instances: | |
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None: | |
""" | |
Args: | |
bboxes (ndarray): bboxes with shape [N, 4]. | |
segments (list | ndarray): segments. | |
keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3]. | |
""" | |
if segments is None: | |
segments = [] | |
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format) | |
self.keypoints = keypoints | |
self.normalized = normalized | |
if len(segments) > 0: | |
# list[np.array(1000, 2)] * num_samples | |
segments = resample_segments(segments) | |
# (N, 1000, 2) | |
segments = np.stack(segments, axis=0) | |
else: | |
segments = np.zeros((0, 1000, 2), dtype=np.float32) | |
self.segments = segments | |
def convert_bbox(self, format): | |
"""Convert bounding box format.""" | |
self._bboxes.convert(format=format) | |
def bbox_areas(self): | |
"""Calculate the area of bounding boxes.""" | |
return self._bboxes.areas() | |
def scale(self, scale_w, scale_h, bbox_only=False): | |
"""this might be similar with denormalize func but without normalized sign.""" | |
self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h)) | |
if bbox_only: | |
return | |
self.segments[..., 0] *= scale_w | |
self.segments[..., 1] *= scale_h | |
if self.keypoints is not None: | |
self.keypoints[..., 0] *= scale_w | |
self.keypoints[..., 1] *= scale_h | |
def denormalize(self, w, h): | |
"""Denormalizes boxes, segments, and keypoints from normalized coordinates.""" | |
if not self.normalized: | |
return | |
self._bboxes.mul(scale=(w, h, w, h)) | |
self.segments[..., 0] *= w | |
self.segments[..., 1] *= h | |
if self.keypoints is not None: | |
self.keypoints[..., 0] *= w | |
self.keypoints[..., 1] *= h | |
self.normalized = False | |
def normalize(self, w, h): | |
"""Normalize bounding boxes, segments, and keypoints to image dimensions.""" | |
if self.normalized: | |
return | |
self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h)) | |
self.segments[..., 0] /= w | |
self.segments[..., 1] /= h | |
if self.keypoints is not None: | |
self.keypoints[..., 0] /= w | |
self.keypoints[..., 1] /= h | |
self.normalized = True | |
def add_padding(self, padw, padh): | |
"""Handle rect and mosaic situation.""" | |
assert not self.normalized, 'you should add padding with absolute coordinates.' | |
self._bboxes.add(offset=(padw, padh, padw, padh)) | |
self.segments[..., 0] += padw | |
self.segments[..., 1] += padh | |
if self.keypoints is not None: | |
self.keypoints[..., 0] += padw | |
self.keypoints[..., 1] += padh | |
def __getitem__(self, index) -> 'Instances': | |
""" | |
Retrieve a specific instance or a set of instances using indexing. | |
Args: | |
index (int, slice, or np.ndarray): The index, slice, or boolean array to select | |
the desired instances. | |
Returns: | |
Instances: A new Instances object containing the selected bounding boxes, | |
segments, and keypoints if present. | |
Note: | |
When using boolean indexing, make sure to provide a boolean array with the same | |
length as the number of instances. | |
""" | |
segments = self.segments[index] if len(self.segments) else self.segments | |
keypoints = self.keypoints[index] if self.keypoints is not None else None | |
bboxes = self.bboxes[index] | |
bbox_format = self._bboxes.format | |
return Instances( | |
bboxes=bboxes, | |
segments=segments, | |
keypoints=keypoints, | |
bbox_format=bbox_format, | |
normalized=self.normalized, | |
) | |
def flipud(self, h): | |
"""Flips the coordinates of bounding boxes, segments, and keypoints vertically.""" | |
if self._bboxes.format == 'xyxy': | |
y1 = self.bboxes[:, 1].copy() | |
y2 = self.bboxes[:, 3].copy() | |
self.bboxes[:, 1] = h - y2 | |
self.bboxes[:, 3] = h - y1 | |
else: | |
self.bboxes[:, 1] = h - self.bboxes[:, 1] | |
self.segments[..., 1] = h - self.segments[..., 1] | |
if self.keypoints is not None: | |
self.keypoints[..., 1] = h - self.keypoints[..., 1] | |
def fliplr(self, w): | |
"""Reverses the order of the bounding boxes and segments horizontally.""" | |
if self._bboxes.format == 'xyxy': | |
x1 = self.bboxes[:, 0].copy() | |
x2 = self.bboxes[:, 2].copy() | |
self.bboxes[:, 0] = w - x2 | |
self.bboxes[:, 2] = w - x1 | |
else: | |
self.bboxes[:, 0] = w - self.bboxes[:, 0] | |
self.segments[..., 0] = w - self.segments[..., 0] | |
if self.keypoints is not None: | |
self.keypoints[..., 0] = w - self.keypoints[..., 0] | |
def clip(self, w, h): | |
"""Clips bounding boxes, segments, and keypoints values to stay within image boundaries.""" | |
ori_format = self._bboxes.format | |
self.convert_bbox(format='xyxy') | |
self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w) | |
self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h) | |
if ori_format != 'xyxy': | |
self.convert_bbox(format=ori_format) | |
self.segments[..., 0] = self.segments[..., 0].clip(0, w) | |
self.segments[..., 1] = self.segments[..., 1].clip(0, h) | |
if self.keypoints is not None: | |
self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w) | |
self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h) | |
def remove_zero_area_boxes(self): | |
"""Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height. This removes them.""" | |
good = self.bbox_areas > 0 | |
if not all(good): | |
self._bboxes = self._bboxes[good] | |
if len(self.segments): | |
self.segments = self.segments[good] | |
if self.keypoints is not None: | |
self.keypoints = self.keypoints[good] | |
return good | |
def update(self, bboxes, segments=None, keypoints=None): | |
"""Updates instance variables.""" | |
self._bboxes = Bboxes(bboxes, format=self._bboxes.format) | |
if segments is not None: | |
self.segments = segments | |
if keypoints is not None: | |
self.keypoints = keypoints | |
def __len__(self): | |
"""Return the length of the instance list.""" | |
return len(self.bboxes) | |
def concatenate(cls, instances_list: List['Instances'], axis=0) -> 'Instances': | |
""" | |
Concatenates a list of Instances objects into a single Instances object. | |
Args: | |
instances_list (List[Instances]): A list of Instances objects to concatenate. | |
axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0. | |
Returns: | |
Instances: A new Instances object containing the concatenated bounding boxes, | |
segments, and keypoints if present. | |
Note: | |
The `Instances` objects in the list should have the same properties, such as | |
the format of the bounding boxes, whether keypoints are present, and if the | |
coordinates are normalized. | |
""" | |
assert isinstance(instances_list, (list, tuple)) | |
if not instances_list: | |
return cls(np.empty(0)) | |
assert all(isinstance(instance, Instances) for instance in instances_list) | |
if len(instances_list) == 1: | |
return instances_list[0] | |
use_keypoint = instances_list[0].keypoints is not None | |
bbox_format = instances_list[0]._bboxes.format | |
normalized = instances_list[0].normalized | |
cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis) | |
cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis) | |
cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None | |
return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized) | |
def bboxes(self): | |
"""Return bounding boxes.""" | |
return self._bboxes.bboxes | |