Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
from ultralytics.yolo.data import ClassificationDataset, build_dataloader | |
from ultralytics.yolo.engine.validator import BaseValidator | |
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER | |
from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix | |
from ultralytics.yolo.utils.plotting import plot_images | |
class ClassificationValidator(BaseValidator): | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar.""" | |
super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
self.args.task = 'classify' | |
self.metrics = ClassifyMetrics() | |
def get_desc(self): | |
"""Returns a formatted string summarizing classification metrics.""" | |
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc') | |
def init_metrics(self, model): | |
"""Initialize confusion matrix, class names, and top-1 and top-5 accuracy.""" | |
self.names = model.names | |
self.nc = len(model.names) | |
self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify') | |
self.pred = [] | |
self.targets = [] | |
def preprocess(self, batch): | |
"""Preprocesses input batch and returns it.""" | |
batch['img'] = batch['img'].to(self.device, non_blocking=True) | |
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float() | |
batch['cls'] = batch['cls'].to(self.device) | |
return batch | |
def update_metrics(self, preds, batch): | |
"""Updates running metrics with model predictions and batch targets.""" | |
n5 = min(len(self.model.names), 5) | |
self.pred.append(preds.argsort(1, descending=True)[:, :n5]) | |
self.targets.append(batch['cls']) | |
def finalize_metrics(self, *args, **kwargs): | |
"""Finalizes metrics of the model such as confusion_matrix and speed.""" | |
self.confusion_matrix.process_cls_preds(self.pred, self.targets) | |
if self.args.plots: | |
for normalize in True, False: | |
self.confusion_matrix.plot(save_dir=self.save_dir, | |
names=self.names.values(), | |
normalize=normalize, | |
on_plot=self.on_plot) | |
self.metrics.speed = self.speed | |
self.metrics.confusion_matrix = self.confusion_matrix | |
def get_stats(self): | |
"""Returns a dictionary of metrics obtained by processing targets and predictions.""" | |
self.metrics.process(self.targets, self.pred) | |
return self.metrics.results_dict | |
def build_dataset(self, img_path): | |
return ClassificationDataset(root=img_path, args=self.args, augment=False) | |
def get_dataloader(self, dataset_path, batch_size): | |
"""Builds and returns a data loader for classification tasks with given parameters.""" | |
dataset = self.build_dataset(dataset_path) | |
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1) | |
def print_results(self): | |
"""Prints evaluation metrics for YOLO object detection model.""" | |
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format | |
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5)) | |
def plot_val_samples(self, batch, ni): | |
"""Plot validation image samples.""" | |
plot_images(images=batch['img'], | |
batch_idx=torch.arange(len(batch['img'])), | |
cls=batch['cls'].squeeze(-1), | |
fname=self.save_dir / f'val_batch{ni}_labels.jpg', | |
names=self.names, | |
on_plot=self.on_plot) | |
def plot_predictions(self, batch, preds, ni): | |
"""Plots predicted bounding boxes on input images and saves the result.""" | |
plot_images(batch['img'], | |
batch_idx=torch.arange(len(batch['img'])), | |
cls=torch.argmax(preds, dim=1), | |
fname=self.save_dir / f'val_batch{ni}_pred.jpg', | |
names=self.names, | |
on_plot=self.on_plot) # pred | |
def val(cfg=DEFAULT_CFG, use_python=False): | |
"""Validate YOLO model using custom data.""" | |
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" | |
data = cfg.data or 'mnist160' | |
args = dict(model=model, data=data) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).val(**args) | |
else: | |
validator = ClassificationValidator(args=args) | |
validator(model=args['model']) | |
if __name__ == '__main__': | |
val() | |