Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from copy import copy | |
from ultralytics.nn.tasks import PoseModel | |
from ultralytics.yolo import v8 | |
from ultralytics.yolo.utils import DEFAULT_CFG | |
from ultralytics.yolo.utils.plotting import plot_images, plot_results | |
# BaseTrainer python usage | |
class PoseTrainer(v8.detect.DetectionTrainer): | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initialize a PoseTrainer object with specified configurations and overrides.""" | |
if overrides is None: | |
overrides = {} | |
overrides['task'] = 'pose' | |
super().__init__(cfg, overrides, _callbacks) | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Get pose estimation model with specified configuration and weights.""" | |
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose) | |
if weights: | |
model.load(weights) | |
return model | |
def set_model_attributes(self): | |
"""Sets keypoints shape attribute of PoseModel.""" | |
super().set_model_attributes() | |
self.model.kpt_shape = self.data['kpt_shape'] | |
def get_validator(self): | |
"""Returns an instance of the PoseValidator class for validation.""" | |
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss' | |
return v8.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) | |
def plot_training_samples(self, batch, ni): | |
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" | |
images = batch['img'] | |
kpts = batch['keypoints'] | |
cls = batch['cls'].squeeze(-1) | |
bboxes = batch['bboxes'] | |
paths = batch['im_file'] | |
batch_idx = batch['batch_idx'] | |
plot_images(images, | |
batch_idx, | |
cls, | |
bboxes, | |
kpts=kpts, | |
paths=paths, | |
fname=self.save_dir / f'train_batch{ni}.jpg', | |
on_plot=self.on_plot) | |
def plot_metrics(self): | |
"""Plots training/val metrics.""" | |
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png | |
def train(cfg=DEFAULT_CFG, use_python=False): | |
"""Train the YOLO model on the given data and device.""" | |
model = cfg.model or 'yolov8n-pose.yaml' | |
data = cfg.data or 'coco8-pose.yaml' | |
device = cfg.device if cfg.device is not None else '' | |
args = dict(model=model, data=data, device=device) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).train(**args) | |
else: | |
trainer = PoseTrainer(overrides=args) | |
trainer.train() | |
if __name__ == '__main__': | |
train() | |