Spaces:
Sleeping
Sleeping
from ultralytics import YOLO | |
import gradio as gr | |
import torch | |
from utils.tools_gradio import fast_process | |
from utils.tools import format_results, box_prompt, point_prompt, text_prompt | |
from PIL import ImageDraw,Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import io | |
import warnings | |
warnings.filterwarnings(action='ignore') | |
model = YOLO('./weights/FastSAM-x.pt') | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() | |
else "mps" if torch.backends.mps.is_available() | |
else "cpu" | |
) | |
def segment_everything( | |
input, | |
input_size=1024, | |
withContours=True, | |
iou_threshold=0.7, | |
conf_threshold=0.25, | |
better_quality=False, | |
use_retina=True, | |
wider=False, | |
mask_random_color=True, | |
): | |
input_size = int(input_size) | |
w, h = input.size | |
scale = input_size / max(w, h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
input = input.resize((new_w, new_h)) | |
results = model(input, | |
device=device, | |
retina_masks=True, | |
iou=iou_threshold, | |
conf=conf_threshold, | |
imgsz=input_size,) | |
annotations = results[0].masks.data | |
segmented_img = fast_process(annotations=annotations, | |
image=input, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
bbox=None, | |
use_retina=use_retina, | |
withContours=withContours,) | |
bboxes = results[0].boxes.data | |
areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) | |
_, largest_indices = torch.topk(areas, 2) | |
largest_boxes = bboxes[largest_indices] | |
for i, box in enumerate(largest_boxes): | |
print(f"Largest Box {i+1}: {box.tolist()}") | |
print('-----------') | |
fig, ax = plt.subplots(1) | |
ax.imshow(input) | |
for box in largest_boxes: | |
x1, y1, x2, y2 = box[:4] | |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, edgecolor='r', facecolor='none') | |
ax.add_patch(rect) | |
ax.axis('off') | |
buf = io.BytesIO() | |
plt.savefig(buf, format='jpg', bbox_inches='tight', pad_inches=0) | |
plt.close(fig) | |
buf.seek(0) | |
cropped_img = Image.open(buf).convert("RGBA") | |
cropped_img = cropped_img.resize((1024, 682)) | |
return segmented_img, cropped_img | |
title = "<center><strong><font size='8'>π Fast Segment Anything π€</font></strong></center>" | |
description = """ # π― Document edge detection using FastSam (without custom training) """ | |
examples = [["examples/invoice3.jpeg"], ["examples/invoice2.jpeg"], ["examples/invoice1.jpeg"]] | |
default_example = examples[0] | |
input_size_slider = gr.components.Slider(minimum=512,maximum=1024,value=1024,step=64,label='Input_size',info='Our model was trained on a size of 1024') | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
demo = gr.Interface( | |
segment_everything, | |
inputs = [ | |
gr.Image(label="Input", type='pil'), | |
gr.components.Slider(minimum=512,maximum=1024,value=1024,step=64,label='Input_size',info='Our model was trained on a size of 1024'), | |
gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks') | |
], | |
outputs = [ | |
gr.Image(label="Segmented Image", interactive=False, type='pil'), | |
gr.Image(label="Cropped Image", interactive=False, type='pil') | |
], | |
title = title, | |
description = description, | |
examples = examples, | |
) | |
demo.launch() |