Spaces:
Sleeping
Sleeping
# Ultralytics YOLO ๐, AGPL-3.0 license | |
import sys | |
from pathlib import Path | |
from typing import Union | |
from ultralytics import yolo # noqa | |
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, PoseModel, SegmentationModel, | |
attempt_load_one_weight, guess_model_task, nn, yaml_model_load) | |
from ultralytics.yolo.cfg import get_cfg | |
from ultralytics.yolo.engine.exporter import Exporter | |
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, NUM_THREADS, RANK, ROOT, | |
callbacks, is_git_dir, yaml_load) | |
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml | |
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS | |
from ultralytics.yolo.utils.torch_utils import smart_inference_mode | |
# Map head to model, trainer, validator, and predictor classes | |
TASK_MAP = { | |
'classify': [ | |
ClassificationModel, yolo.v8.classify.ClassificationTrainer, yolo.v8.classify.ClassificationValidator, | |
yolo.v8.classify.ClassificationPredictor], | |
'detect': [ | |
DetectionModel, yolo.v8.detect.DetectionTrainer, yolo.v8.detect.DetectionValidator, | |
yolo.v8.detect.DetectionPredictor], | |
'segment': [ | |
SegmentationModel, yolo.v8.segment.SegmentationTrainer, yolo.v8.segment.SegmentationValidator, | |
yolo.v8.segment.SegmentationPredictor], | |
'pose': [PoseModel, yolo.v8.pose.PoseTrainer, yolo.v8.pose.PoseValidator, yolo.v8.pose.PosePredictor]} | |
class YOLO: | |
""" | |
YOLO (You Only Look Once) object detection model. | |
Args: | |
model (str, Path): Path to the model file to load or create. | |
task (Any, optional): Task type for the YOLO model. Defaults to None. | |
Attributes: | |
predictor (Any): The predictor object. | |
model (Any): The model object. | |
trainer (Any): The trainer object. | |
task (str): The type of model task. | |
ckpt (Any): The checkpoint object if the model loaded from *.pt file. | |
cfg (str): The model configuration if loaded from *.yaml file. | |
ckpt_path (str): The checkpoint file path. | |
overrides (dict): Overrides for the trainer object. | |
metrics (Any): The data for metrics. | |
Methods: | |
__call__(source=None, stream=False, **kwargs): | |
Alias for the predict method. | |
_new(cfg:str, verbose:bool=True) -> None: | |
Initializes a new model and infers the task type from the model definitions. | |
_load(weights:str, task:str='') -> None: | |
Initializes a new model and infers the task type from the model head. | |
_check_is_pytorch_model() -> None: | |
Raises TypeError if the model is not a PyTorch model. | |
reset() -> None: | |
Resets the model modules. | |
info(verbose:bool=False) -> None: | |
Logs the model info. | |
fuse() -> None: | |
Fuses the model for faster inference. | |
predict(source=None, stream=False, **kwargs) -> List[ultralytics.yolo.engine.results.Results]: | |
Performs prediction using the YOLO model. | |
Returns: | |
list(ultralytics.yolo.engine.results.Results): The prediction results. | |
""" | |
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None: | |
""" | |
Initializes the YOLO model. | |
Args: | |
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'. | |
task (Any, optional): Task type for the YOLO model. Defaults to None. | |
""" | |
self.callbacks = callbacks.get_default_callbacks() | |
self.predictor = None # reuse predictor | |
self.model = None # model object | |
self.trainer = None # trainer object | |
self.task = None # task type | |
self.ckpt = None # if loaded from *.pt | |
self.cfg = None # if loaded from *.yaml | |
self.ckpt_path = None | |
self.overrides = {} # overrides for trainer object | |
self.metrics = None # validation/training metrics | |
self.session = None # HUB session | |
model = str(model).strip() # strip spaces | |
# Check if Ultralytics HUB model from https://hub.ultralytics.com | |
if self.is_hub_model(model): | |
from ultralytics.hub.session import HUBTrainingSession | |
self.session = HUBTrainingSession(model) | |
model = self.session.model_file | |
# Load or create new YOLO model | |
suffix = Path(model).suffix | |
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS: | |
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt | |
if suffix == '.yaml': | |
self._new(model, task) | |
else: | |
self._load(model, task) | |
def __call__(self, source=None, stream=False, **kwargs): | |
"""Calls the 'predict' function with given arguments to perform object detection.""" | |
return self.predict(source, stream, **kwargs) | |
def __getattr__(self, attr): | |
"""Raises error if object has no requested attribute.""" | |
name = self.__class__.__name__ | |
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |
def is_hub_model(model): | |
"""Check if the provided model is a HUB model.""" | |
return any(( | |
model.startswith('https://hub.ultralytics.com/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID | |
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID | |
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID | |
def _new(self, cfg: str, task=None, verbose=True): | |
""" | |
Initializes a new model and infers the task type from the model definitions. | |
Args: | |
cfg (str): model configuration file | |
task (str | None): model task | |
verbose (bool): display model info on load | |
""" | |
cfg_dict = yaml_model_load(cfg) | |
self.cfg = cfg | |
self.task = task or guess_model_task(cfg_dict) | |
self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model | |
self.overrides['model'] = self.cfg | |
# Below added to allow export from yamls | |
args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args | |
self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model | |
self.model.task = self.task | |
def _load(self, weights: str, task=None): | |
""" | |
Initializes a new model and infers the task type from the model head. | |
Args: | |
weights (str): model checkpoint to be loaded | |
task (str | None): model task | |
""" | |
suffix = Path(weights).suffix | |
if suffix == '.pt': | |
self.model, self.ckpt = attempt_load_one_weight(weights) | |
self.task = self.model.args['task'] | |
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) | |
self.ckpt_path = self.model.pt_path | |
else: | |
weights = check_file(weights) | |
self.model, self.ckpt = weights, None | |
self.task = task or guess_model_task(weights) | |
self.ckpt_path = weights | |
self.overrides['model'] = weights | |
self.overrides['task'] = self.task | |
def _check_is_pytorch_model(self): | |
""" | |
Raises TypeError is model is not a PyTorch model | |
""" | |
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' | |
pt_module = isinstance(self.model, nn.Module) | |
if not (pt_module or pt_str): | |
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " | |
f'PyTorch models can be used to train, val, predict and export, i.e. ' | |
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " | |
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") | |
def reset_weights(self): | |
""" | |
Resets the model modules parameters to randomly initialized values, losing all training information. | |
""" | |
self._check_is_pytorch_model() | |
for m in self.model.modules(): | |
if hasattr(m, 'reset_parameters'): | |
m.reset_parameters() | |
for p in self.model.parameters(): | |
p.requires_grad = True | |
return self | |
def load(self, weights='yolov8n.pt'): | |
""" | |
Transfers parameters with matching names and shapes from 'weights' to model. | |
""" | |
self._check_is_pytorch_model() | |
if isinstance(weights, (str, Path)): | |
weights, self.ckpt = attempt_load_one_weight(weights) | |
self.model.load(weights) | |
return self | |
def info(self, detailed=False, verbose=True): | |
""" | |
Logs model info. | |
Args: | |
detailed (bool): Show detailed information about model. | |
verbose (bool): Controls verbosity. | |
""" | |
self._check_is_pytorch_model() | |
return self.model.info(detailed=detailed, verbose=verbose) | |
def fuse(self): | |
"""Fuse PyTorch Conv2d and BatchNorm2d layers.""" | |
self._check_is_pytorch_model() | |
self.model.fuse() | |
def predict(self, source=None, stream=False, **kwargs): | |
""" | |
Perform prediction using the YOLO model. | |
Args: | |
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. | |
Accepts all source types accepted by the YOLO model. | |
stream (bool): Whether to stream the predictions or not. Defaults to False. | |
**kwargs : Additional keyword arguments passed to the predictor. | |
Check the 'configuration' section in the documentation for all available options. | |
Returns: | |
(List[ultralytics.yolo.engine.results.Results]): The prediction results. | |
""" | |
if source is None: | |
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' | |
LOGGER.warning(f"WARNING โ ๏ธ 'source' is missing. Using 'source={source}'.") | |
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any( | |
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track')) | |
overrides = self.overrides.copy() | |
overrides['conf'] = 0.25 | |
overrides.update(kwargs) # prefer kwargs | |
overrides['mode'] = kwargs.get('mode', 'predict') | |
assert overrides['mode'] in ['track', 'predict'] | |
if not is_cli: | |
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python | |
if not self.predictor: | |
self.task = overrides.get('task') or self.task | |
self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks) | |
self.predictor.setup_model(model=self.model, verbose=is_cli) | |
else: # only update args if predictor is already setup | |
self.predictor.args = get_cfg(self.predictor.args, overrides) | |
if 'project' in overrides or 'name' in overrides: | |
self.predictor.save_dir = self.predictor.get_save_dir() | |
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) | |
def track(self, source=None, stream=False, persist=False, **kwargs): | |
""" | |
Perform object tracking on the input source using the registered trackers. | |
Args: | |
source (str, optional): The input source for object tracking. Can be a file path or a video stream. | |
stream (bool, optional): Whether the input source is a video stream. Defaults to False. | |
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. | |
**kwargs (optional): Additional keyword arguments for the tracking process. | |
Returns: | |
(List[ultralytics.yolo.engine.results.Results]): The tracking results. | |
""" | |
if not hasattr(self.predictor, 'trackers'): | |
from ultralytics.tracker import register_tracker | |
register_tracker(self, persist) | |
# ByteTrack-based method needs low confidence predictions as input | |
conf = kwargs.get('conf') or 0.1 | |
kwargs['conf'] = conf | |
kwargs['mode'] = 'track' | |
return self.predict(source=source, stream=stream, **kwargs) | |
def val(self, data=None, **kwargs): | |
""" | |
Validate a model on a given dataset. | |
Args: | |
data (str): The dataset to validate on. Accepts all formats accepted by yolo | |
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs | |
""" | |
overrides = self.overrides.copy() | |
overrides['rect'] = True # rect batches as default | |
overrides.update(kwargs) | |
overrides['mode'] = 'val' | |
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
args.data = data or args.data | |
if 'task' in overrides: | |
self.task = args.task | |
else: | |
args.task = self.task | |
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)): | |
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
args.imgsz = check_imgsz(args.imgsz, max_dim=1) | |
validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks) | |
validator(model=self.model) | |
self.metrics = validator.metrics | |
return validator.metrics | |
def benchmark(self, **kwargs): | |
""" | |
Benchmark a model on all export formats. | |
Args: | |
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs | |
""" | |
self._check_is_pytorch_model() | |
from ultralytics.yolo.utils.benchmarks import benchmark | |
overrides = self.model.args.copy() | |
overrides.update(kwargs) | |
overrides['mode'] = 'benchmark' | |
overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults | |
return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device']) | |
def export(self, **kwargs): | |
""" | |
Export model. | |
Args: | |
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
""" | |
self._check_is_pytorch_model() | |
overrides = self.overrides.copy() | |
overrides.update(kwargs) | |
overrides['mode'] = 'export' | |
if overrides.get('imgsz') is None: | |
overrides['imgsz'] = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
if 'batch' not in kwargs: | |
overrides['batch'] = 1 # default to 1 if not modified | |
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
args.task = self.task | |
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) | |
def train(self, **kwargs): | |
""" | |
Trains the model on a given dataset. | |
Args: | |
**kwargs (Any): Any number of arguments representing the training configuration. | |
""" | |
self._check_is_pytorch_model() | |
if self.session: # Ultralytics HUB session | |
if any(kwargs): | |
LOGGER.warning('WARNING โ ๏ธ using HUB training arguments, ignoring local training arguments.') | |
kwargs = self.session.train_args | |
check_pip_update_available() | |
overrides = self.overrides.copy() | |
if kwargs.get('cfg'): | |
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.") | |
overrides = yaml_load(check_yaml(kwargs['cfg'])) | |
overrides.update(kwargs) | |
overrides['mode'] = 'train' | |
if not overrides.get('data'): | |
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") | |
if overrides.get('resume'): | |
overrides['resume'] = self.ckpt_path | |
self.task = overrides.get('task') or self.task | |
self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks) | |
if not overrides.get('resume'): # manually set model only if not resuming | |
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) | |
self.model = self.trainer.model | |
self.trainer.hub_session = self.session # attach optional HUB session | |
self.trainer.train() | |
# Update model and cfg after training | |
if RANK in (-1, 0): | |
self.model, _ = attempt_load_one_weight(str(self.trainer.best)) | |
self.overrides = self.model.args | |
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP | |
def to(self, device): | |
""" | |
Sends the model to the given device. | |
Args: | |
device (str): device | |
""" | |
self._check_is_pytorch_model() | |
self.model.to(device) | |
def tune(self, | |
data: str, | |
space: dict = None, | |
grace_period: int = 10, | |
gpu_per_trial: int = None, | |
max_samples: int = 10, | |
train_args: dict = None): | |
""" | |
Runs hyperparameter tuning using Ray Tune. | |
Args: | |
data (str): The dataset to run the tuner on. | |
space (dict, optional): The hyperparameter search space. Defaults to None. | |
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. | |
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. | |
max_samples (int, optional): The maximum number of trials to run. Defaults to 10. | |
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. | |
Returns: | |
(dict): A dictionary containing the results of the hyperparameter search. | |
Raises: | |
ModuleNotFoundError: If Ray Tune is not installed. | |
""" | |
if train_args is None: | |
train_args = {} | |
try: | |
from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space, | |
task_metric_map, tune) | |
except ImportError: | |
raise ModuleNotFoundError("Install Ray Tune: `pip install 'ray[tune]'`") | |
try: | |
import wandb | |
from wandb import __version__ # noqa | |
except ImportError: | |
wandb = False | |
def _tune(config): | |
""" | |
Trains the YOLO model with the specified hyperparameters and additional arguments. | |
Args: | |
config (dict): A dictionary of hyperparameters to use for training. | |
Returns: | |
None. | |
""" | |
self._reset_callbacks() | |
config.update(train_args) | |
self.train(**config) | |
if not space: | |
LOGGER.warning('WARNING: search space not provided. Using default search space') | |
space = default_space | |
space['data'] = data | |
# Define the trainable function with allocated resources | |
trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0}) | |
# Define the ASHA scheduler for hyperparameter search | |
asha_scheduler = ASHAScheduler(time_attr='epoch', | |
metric=task_metric_map[self.task], | |
mode='max', | |
max_t=train_args.get('epochs') or 100, | |
grace_period=grace_period, | |
reduction_factor=3) | |
# Define the callbacks for the hyperparameter search | |
tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else [] | |
# Create the Ray Tune hyperparameter search tuner | |
tuner = tune.Tuner(trainable_with_resources, | |
param_space=space, | |
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), | |
run_config=RunConfig(callbacks=tuner_callbacks, local_dir='./runs')) | |
# Run the hyperparameter search | |
tuner.fit() | |
# Return the results of the hyperparameter search | |
return tuner.get_results() | |
def names(self): | |
"""Returns class names of the loaded model.""" | |
return self.model.names if hasattr(self.model, 'names') else None | |
def device(self): | |
"""Returns device if PyTorch model.""" | |
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None | |
def transforms(self): | |
"""Returns transform of the loaded model.""" | |
return self.model.transforms if hasattr(self.model, 'transforms') else None | |
def add_callback(self, event: str, func): | |
"""Add a callback.""" | |
self.callbacks[event].append(func) | |
def clear_callback(self, event: str): | |
"""Clear all event callbacks.""" | |
self.callbacks[event] = [] | |
def _reset_ckpt_args(args): | |
"""Reset arguments when loading a PyTorch model.""" | |
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model | |
return {k: v for k, v in args.items() if k in include} | |
def _reset_callbacks(self): | |
"""Reset all registered callbacks.""" | |
for event in callbacks.default_callbacks.keys(): | |
self.callbacks[event] = [callbacks.default_callbacks[event][0]] | |