Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
Ultralytics Results, Boxes and Masks classes for handling inference results | |
Usage: See https://docs.ultralytics.com/modes/predict/ | |
""" | |
from copy import deepcopy | |
from functools import lru_cache | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from ultralytics.yolo.data.augment import LetterBox | |
from ultralytics.yolo.utils import LOGGER, SimpleClass, deprecation_warn, ops | |
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box | |
class BaseTensor(SimpleClass): | |
""" | |
Base tensor class with additional methods for easy manipulation and device handling. | |
""" | |
def __init__(self, data, orig_shape) -> None: | |
"""Initialize BaseTensor with data and original shape. | |
Args: | |
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints. | |
orig_shape (tuple): Original shape of image. | |
""" | |
assert isinstance(data, (torch.Tensor, np.ndarray)) | |
self.data = data | |
self.orig_shape = orig_shape | |
def shape(self): | |
"""Return the shape of the data tensor.""" | |
return self.data.shape | |
def cpu(self): | |
"""Return a copy of the tensor on CPU memory.""" | |
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape) | |
def numpy(self): | |
"""Return a copy of the tensor as a numpy array.""" | |
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape) | |
def cuda(self): | |
"""Return a copy of the tensor on GPU memory.""" | |
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape) | |
def to(self, *args, **kwargs): | |
"""Return a copy of the tensor with the specified device and dtype.""" | |
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape) | |
def __len__(self): # override len(results) | |
"""Return the length of the data tensor.""" | |
return len(self.data) | |
def __getitem__(self, idx): | |
"""Return a BaseTensor with the specified index of the data tensor.""" | |
return self.__class__(self.data[idx], self.orig_shape) | |
class Results(SimpleClass): | |
""" | |
A class for storing and manipulating inference results. | |
Args: | |
orig_img (numpy.ndarray): The original image as a numpy array. | |
path (str): The path to the image file. | |
names (dict): A dictionary of class names. | |
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection. | |
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image. | |
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task. | |
keypoints (List[List[float]], optional): A list of detected keypoints for each object. | |
Attributes: | |
orig_img (numpy.ndarray): The original image as a numpy array. | |
orig_shape (tuple): The original image shape in (height, width) format. | |
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. | |
masks (Masks, optional): A Masks object containing the detection masks. | |
probs (Probs, optional): A Probs object containing probabilities of each class for classification task. | |
names (dict): A dictionary of class names. | |
path (str): The path to the image file. | |
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object. | |
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image. | |
_keys (tuple): A tuple of attribute names for non-empty attributes. | |
""" | |
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None: | |
"""Initialize the Results class.""" | |
self.orig_img = orig_img | |
self.orig_shape = orig_img.shape[:2] | |
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes | |
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks | |
self.probs = Probs(probs) if probs is not None else None | |
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None | |
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image | |
self.names = names | |
self.path = path | |
self.save_dir = None | |
self._keys = ('boxes', 'masks', 'probs', 'keypoints') | |
def __getitem__(self, idx): | |
"""Return a Results object for the specified index.""" | |
r = self.new() | |
for k in self.keys: | |
setattr(r, k, getattr(self, k)[idx]) | |
return r | |
def update(self, boxes=None, masks=None, probs=None): | |
"""Update the boxes, masks, and probs attributes of the Results object.""" | |
if boxes is not None: | |
self.boxes = Boxes(boxes, self.orig_shape) | |
if masks is not None: | |
self.masks = Masks(masks, self.orig_shape) | |
if probs is not None: | |
self.probs = probs | |
def cpu(self): | |
"""Return a copy of the Results object with all tensors on CPU memory.""" | |
r = self.new() | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).cpu()) | |
return r | |
def numpy(self): | |
"""Return a copy of the Results object with all tensors as numpy arrays.""" | |
r = self.new() | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).numpy()) | |
return r | |
def cuda(self): | |
"""Return a copy of the Results object with all tensors on GPU memory.""" | |
r = self.new() | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).cuda()) | |
return r | |
def to(self, *args, **kwargs): | |
"""Return a copy of the Results object with tensors on the specified device and dtype.""" | |
r = self.new() | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).to(*args, **kwargs)) | |
return r | |
def __len__(self): | |
"""Return the number of detections in the Results object.""" | |
for k in self.keys: | |
return len(getattr(self, k)) | |
def new(self): | |
"""Return a new Results object with the same image, path, and names.""" | |
return Results(orig_img=self.orig_img, path=self.path, names=self.names) | |
def keys(self): | |
"""Return a list of non-empty attribute names.""" | |
return [k for k in self._keys if getattr(self, k) is not None] | |
def plot( | |
self, | |
conf=True, | |
line_width=None, | |
font_size=None, | |
font='Arial.ttf', | |
pil=False, | |
img=None, | |
img_gpu=None, | |
kpt_line=True, | |
labels=True, | |
boxes=True, | |
masks=True, | |
probs=True, | |
**kwargs # deprecated args TODO: remove support in 8.2 | |
): | |
""" | |
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image. | |
Args: | |
conf (bool): Whether to plot the detection confidence score. | |
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size. | |
font_size (float, optional): The font size of the text. If None, it is scaled to the image size. | |
font (str): The font to use for the text. | |
pil (bool): Whether to return the image as a PIL Image. | |
img (numpy.ndarray): Plot to another image. if not, plot to original image. | |
img_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting. | |
kpt_line (bool): Whether to draw lines connecting keypoints. | |
labels (bool): Whether to plot the label of bounding boxes. | |
boxes (bool): Whether to plot the bounding boxes. | |
masks (bool): Whether to plot the masks. | |
probs (bool): Whether to plot classification probability | |
Returns: | |
(numpy.ndarray): A numpy array of the annotated image. | |
""" | |
# Deprecation warn TODO: remove in 8.2 | |
if 'show_conf' in kwargs: | |
deprecation_warn('show_conf', 'conf') | |
conf = kwargs['show_conf'] | |
assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False' | |
if 'line_thickness' in kwargs: | |
deprecation_warn('line_thickness', 'line_width') | |
line_width = kwargs['line_thickness'] | |
assert type(line_width) == int, '`line_width` should be of int type, i.e, line_width=3' | |
names = self.names | |
annotator = Annotator(deepcopy(self.orig_img if img is None else img), | |
line_width, | |
font_size, | |
font, | |
pil, | |
example=names) | |
pred_boxes, show_boxes = self.boxes, boxes | |
pred_masks, show_masks = self.masks, masks | |
pred_probs, show_probs = self.probs, probs | |
keypoints = self.keypoints | |
if pred_masks and show_masks: | |
if img_gpu is None: | |
img = LetterBox(pred_masks.shape[1:])(image=annotator.result()) | |
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute( | |
2, 0, 1).flip(0).contiguous() / 255 | |
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks)) | |
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=img_gpu) | |
if pred_boxes and show_boxes: | |
for d in reversed(pred_boxes): | |
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item()) | |
name = ('' if id is None else f'id:{id} ') + names[c] | |
label = (f'{name} {conf:.2f}' if conf else name) if labels else None | |
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) | |
if pred_probs is not None and show_probs: | |
text = f"{', '.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)}, " | |
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors | |
if keypoints is not None: | |
for k in reversed(keypoints.data): | |
annotator.kpts(k, self.orig_shape, kpt_line=kpt_line) | |
return annotator.result() | |
def verbose(self): | |
""" | |
Return log string for each task. | |
""" | |
log_string = '' | |
probs = self.probs | |
boxes = self.boxes | |
if len(self) == 0: | |
return log_string if probs is not None else f'{log_string}(no detections), ' | |
if probs is not None: | |
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, " | |
if boxes: | |
for c in boxes.cls.unique(): | |
n = (boxes.cls == c).sum() # detections per class | |
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " | |
return log_string | |
def save_txt(self, txt_file, save_conf=False): | |
""" | |
Save predictions into txt file. | |
Args: | |
txt_file (str): txt file path. | |
save_conf (bool): save confidence score or not. | |
""" | |
boxes = self.boxes | |
masks = self.masks | |
probs = self.probs | |
kpts = self.keypoints | |
texts = [] | |
if probs is not None: | |
# Classify | |
[texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5] | |
elif boxes: | |
# Detect/segment/pose | |
for j, d in enumerate(boxes): | |
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item()) | |
line = (c, *d.xywhn.view(-1)) | |
if masks: | |
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2) | |
line = (c, *seg) | |
if kpts is not None: | |
kpt = kpts[j].xyn.reshape(-1).tolist() | |
line += (*kpt, ) | |
line += (conf, ) * save_conf + (() if id is None else (id, )) | |
texts.append(('%g ' * len(line)).rstrip() % line) | |
if texts: | |
with open(txt_file, 'a') as f: | |
f.writelines(text + '\n' for text in texts) | |
def save_crop(self, save_dir, file_name=Path('im.jpg')): | |
""" | |
Save cropped predictions to `save_dir/cls/file_name.jpg`. | |
Args: | |
save_dir (str | pathlib.Path): Save path. | |
file_name (str | pathlib.Path): File name. | |
""" | |
if self.probs is not None: | |
LOGGER.warning('Warning: Classify task do not support `save_crop`.') | |
return | |
if isinstance(save_dir, str): | |
save_dir = Path(save_dir) | |
if isinstance(file_name, str): | |
file_name = Path(file_name) | |
for d in self.boxes: | |
save_one_box(d.xyxy, | |
self.orig_img.copy(), | |
file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg', | |
BGR=True) | |
def pandas(self): | |
"""Convert the object to a pandas DataFrame (not yet implemented).""" | |
LOGGER.warning("WARNING ⚠️ 'Results.pandas' method is not yet implemented.") | |
def tojson(self, normalize=False): | |
"""Convert the object to JSON format.""" | |
if self.probs is not None: | |
LOGGER.warning('Warning: Classify task do not support `tojson` yet.') | |
return | |
import json | |
# Create list of detection dictionaries | |
results = [] | |
data = self.boxes.data.cpu().tolist() | |
h, w = self.orig_shape if normalize else (1, 1) | |
for i, row in enumerate(data): | |
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h} | |
conf = row[4] | |
id = int(row[5]) | |
name = self.names[id] | |
result = {'name': name, 'class': id, 'confidence': conf, 'box': box} | |
if self.masks: | |
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array | |
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()} | |
if self.keypoints is not None: | |
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor | |
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()} | |
results.append(result) | |
# Convert detections to JSON | |
return json.dumps(results, indent=2) | |
class Boxes(BaseTensor): | |
""" | |
A class for storing and manipulating detection boxes. | |
Args: | |
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, | |
with shape (num_boxes, 6). The last two columns should contain confidence and class values. | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Attributes: | |
boxes (torch.Tensor | numpy.ndarray): The detection boxes with shape (num_boxes, 6). | |
orig_shape (torch.Tensor | numpy.ndarray): Original image size, in the format (height, width). | |
is_track (bool): True if the boxes also include track IDs, False otherwise. | |
Properties: | |
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format. | |
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes. | |
cls (torch.Tensor | numpy.ndarray): The class values of the boxes. | |
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available). | |
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format. | |
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size. | |
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size. | |
data (torch.Tensor): The raw bboxes tensor | |
Methods: | |
cpu(): Move the object to CPU memory. | |
numpy(): Convert the object to a numpy array. | |
cuda(): Move the object to CUDA memory. | |
to(*args, **kwargs): Move the object to the specified device. | |
pandas(): Convert the object to a pandas DataFrame (not yet implemented). | |
""" | |
def __init__(self, boxes, orig_shape) -> None: | |
"""Initialize the Boxes class.""" | |
if boxes.ndim == 1: | |
boxes = boxes[None, :] | |
n = boxes.shape[-1] | |
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls | |
super().__init__(boxes, orig_shape) | |
self.is_track = n == 7 | |
self.orig_shape = orig_shape | |
def xyxy(self): | |
"""Return the boxes in xyxy format.""" | |
return self.data[:, :4] | |
def conf(self): | |
"""Return the confidence values of the boxes.""" | |
return self.data[:, -2] | |
def cls(self): | |
"""Return the class values of the boxes.""" | |
return self.data[:, -1] | |
def id(self): | |
"""Return the track IDs of the boxes (if available).""" | |
return self.data[:, -3] if self.is_track else None | |
# maxsize 1 should suffice | |
def xywh(self): | |
"""Return the boxes in xywh format.""" | |
return ops.xyxy2xywh(self.xyxy) | |
def xyxyn(self): | |
"""Return the boxes in xyxy format normalized by original image size.""" | |
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy) | |
xyxy[..., [0, 2]] /= self.orig_shape[1] | |
xyxy[..., [1, 3]] /= self.orig_shape[0] | |
return xyxy | |
def xywhn(self): | |
"""Return the boxes in xywh format normalized by original image size.""" | |
xywh = ops.xyxy2xywh(self.xyxy) | |
xywh[..., [0, 2]] /= self.orig_shape[1] | |
xywh[..., [1, 3]] /= self.orig_shape[0] | |
return xywh | |
def boxes(self): | |
"""Return the raw bboxes tensor (deprecated).""" | |
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.") | |
return self.data | |
class Masks(BaseTensor): | |
""" | |
A class for storing and manipulating detection masks. | |
Args: | |
masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width). | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Attributes: | |
masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width). | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Properties: | |
xy (list): A list of segments (pixels) which includes x, y segments of each detection. | |
xyn (list): A list of segments (normalized) which includes x, y segments of each detection. | |
Methods: | |
cpu(): Returns a copy of the masks tensor on CPU memory. | |
numpy(): Returns a copy of the masks tensor as a numpy array. | |
cuda(): Returns a copy of the masks tensor on GPU memory. | |
to(): Returns a copy of the masks tensor with the specified device and dtype. | |
""" | |
def __init__(self, masks, orig_shape) -> None: | |
"""Initialize the Masks class.""" | |
if masks.ndim == 2: | |
masks = masks[None, :] | |
super().__init__(masks, orig_shape) | |
def segments(self): | |
"""Return segments (deprecated; normalized).""" | |
LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and " | |
"'Masks.xy' for segments (pixels) instead.") | |
return self.xyn | |
def xyn(self): | |
"""Return segments (normalized).""" | |
return [ | |
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True) | |
for x in ops.masks2segments(self.data)] | |
def xy(self): | |
"""Return segments (pixels).""" | |
return [ | |
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False) | |
for x in ops.masks2segments(self.data)] | |
def masks(self): | |
"""Return the raw masks tensor (deprecated).""" | |
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.") | |
return self.data | |
def pandas(self): | |
"""Convert the object to a pandas DataFrame (not yet implemented).""" | |
LOGGER.warning("WARNING ⚠️ 'Masks.pandas' method is not yet implemented.") | |
class Keypoints(BaseTensor): | |
""" | |
A class for storing and manipulating detection keypoints. | |
Args: | |
keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3). | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Attributes: | |
keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3). | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Properties: | |
xy (list): A list of keypoints (pixels) which includes x, y keypoints of each detection. | |
xyn (list): A list of keypoints (normalized) which includes x, y keypoints of each detection. | |
Methods: | |
cpu(): Returns a copy of the keypoints tensor on CPU memory. | |
numpy(): Returns a copy of the keypoints tensor as a numpy array. | |
cuda(): Returns a copy of the keypoints tensor on GPU memory. | |
to(): Returns a copy of the keypoints tensor with the specified device and dtype. | |
""" | |
def __init__(self, keypoints, orig_shape) -> None: | |
if keypoints.ndim == 2: | |
keypoints = keypoints[None, :] | |
super().__init__(keypoints, orig_shape) | |
self.has_visible = self.data.shape[-1] == 3 | |
def xy(self): | |
return self.data[..., :2] | |
def xyn(self): | |
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy) | |
xy[..., 0] /= self.orig_shape[1] | |
xy[..., 1] /= self.orig_shape[0] | |
return xy | |
def conf(self): | |
return self.data[..., 2] if self.has_visible else None | |
class Probs(BaseTensor): | |
""" | |
A class for storing and manipulating classify predictions. | |
Args: | |
probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class, ). | |
Attributes: | |
probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class). | |
Properties: | |
top5 (list[int]): Top 1 indice. | |
top1 (int): Top 5 indices. | |
Methods: | |
cpu(): Returns a copy of the probs tensor on CPU memory. | |
numpy(): Returns a copy of the probs tensor as a numpy array. | |
cuda(): Returns a copy of the probs tensor on GPU memory. | |
to(): Returns a copy of the probs tensor with the specified device and dtype. | |
""" | |
def __init__(self, probs, orig_shape=None) -> None: | |
super().__init__(probs, orig_shape) | |
def top5(self): | |
"""Return the indices of top 5.""" | |
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy. | |
def top1(self): | |
"""Return the indices of top 1.""" | |
return int(self.data.argmax()) | |
def top5conf(self): | |
"""Return the confidences of top 5.""" | |
return self.data[self.top5] | |
def top1conf(self): | |
"""Return the confidences of top 1.""" | |
return self.data[self.top1] | |