Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
""" | |
Benchmark a YOLO model formats for speed and accuracy | |
Usage: | |
from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark | |
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile() | |
run_benchmarks(model='yolov8n.pt', imgsz=160) | |
Format | `format=argument` | Model | |
--- | --- | --- | |
PyTorch | - | yolov8n.pt | |
TorchScript | `torchscript` | yolov8n.torchscript | |
ONNX | `onnx` | yolov8n.onnx | |
OpenVINO | `openvino` | yolov8n_openvino_model/ | |
TensorRT | `engine` | yolov8n.engine | |
CoreML | `coreml` | yolov8n.mlmodel | |
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ | |
TensorFlow GraphDef | `pb` | yolov8n.pb | |
TensorFlow Lite | `tflite` | yolov8n.tflite | |
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite | |
TensorFlow.js | `tfjs` | yolov8n_web_model/ | |
PaddlePaddle | `paddle` | yolov8n_paddle_model/ | |
""" | |
import glob | |
import platform | |
import time | |
from pathlib import Path | |
import numpy as np | |
import torch.cuda | |
from tqdm import tqdm | |
from ultralytics import YOLO | |
from ultralytics.yolo.engine.exporter import export_formats | |
from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS | |
from ultralytics.yolo.utils.checks import check_requirements, check_yolo | |
from ultralytics.yolo.utils.downloads import download | |
from ultralytics.yolo.utils.files import file_size | |
from ultralytics.yolo.utils.torch_utils import select_device | |
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', | |
imgsz=160, | |
half=False, | |
int8=False, | |
device='cpu', | |
hard_fail=False): | |
""" | |
Benchmark a YOLO model across different formats for speed and accuracy. | |
Args: | |
model (str | Path | optional): Path to the model file or directory. Default is | |
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. | |
imgsz (int, optional): Image size for the benchmark. Default is 160. | |
half (bool, optional): Use half-precision for the model if True. Default is False. | |
int8 (bool, optional): Use int8-precision for the model if True. Default is False. | |
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. | |
hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric. | |
Default is False. | |
Returns: | |
df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, | |
metric, and inference time. | |
""" | |
import pandas as pd | |
pd.options.display.max_columns = 10 | |
pd.options.display.width = 120 | |
device = select_device(device, verbose=False) | |
if isinstance(model, (str, Path)): | |
model = YOLO(model) | |
y = [] | |
t0 = time.time() | |
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU) | |
emoji, filename = 'β', None # export defaults | |
try: | |
assert i != 9 or LINUX, 'Edge TPU export only supported on Linux' | |
if i == 10: | |
assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux' | |
if 'cpu' in device.type: | |
assert cpu, 'inference not supported on CPU' | |
if 'cuda' in device.type: | |
assert gpu, 'inference not supported on GPU' | |
# Export | |
if format == '-': | |
filename = model.ckpt_path or model.cfg | |
export = model # PyTorch format | |
else: | |
filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False) | |
export = YOLO(filename, task=model.task) | |
assert suffix in str(filename), 'export failed' | |
emoji = 'β' # indicates export succeeded | |
# Predict | |
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported | |
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML | |
if not (ROOT / 'assets/bus.jpg').exists(): | |
download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets') | |
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half) | |
# Validate | |
if model.task == 'detect': | |
data, key = 'coco8.yaml', 'metrics/mAP50-95(B)' | |
elif model.task == 'segment': | |
data, key = 'coco8-seg.yaml', 'metrics/mAP50-95(M)' | |
elif model.task == 'classify': | |
data, key = 'imagenet100', 'metrics/accuracy_top5' | |
elif model.task == 'pose': | |
data, key = 'coco8-pose.yaml', 'metrics/mAP50-95(P)' | |
results = export.val(data=data, | |
batch=1, | |
imgsz=imgsz, | |
plots=False, | |
device=device, | |
half=half, | |
int8=int8, | |
verbose=False) | |
metric, speed = results.results_dict[key], results.speed['inference'] | |
y.append([name, 'β ', round(file_size(filename), 1), round(metric, 4), round(speed, 2)]) | |
except Exception as e: | |
if hard_fail: | |
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}' | |
LOGGER.warning(f'ERROR βοΈ Benchmark failure for {name}: {e}') | |
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference | |
# Print results | |
check_yolo(device=device) # print system info | |
df = pd.DataFrame(y, columns=['Format', 'Statusβ', 'Size (MB)', key, 'Inference time (ms/im)']) | |
name = Path(model.ckpt_path).name | |
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n' | |
LOGGER.info(s) | |
with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f: | |
f.write(s) | |
if hard_fail and isinstance(hard_fail, float): | |
metrics = df[key].array # values to compare to floor | |
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n | |
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}' | |
return df | |
class ProfileModels: | |
""" | |
ProfileModels class for profiling different models on ONNX and TensorRT. | |
This class profiles the performance of different models, provided their paths. The profiling includes parameters such as | |
model speed and FLOPs. | |
Attributes: | |
paths (list): Paths of the models to profile. | |
num_timed_runs (int): Number of timed runs for the profiling. Default is 100. | |
num_warmup_runs (int): Number of warmup runs before profiling. Default is 10. | |
min_time (float): Minimum number of seconds to profile for. Default is 60. | |
imgsz (int): Image size used in the models. Default is 640. | |
Methods: | |
profile(): Profiles the models and prints the result. | |
""" | |
def __init__(self, | |
paths: list, | |
num_timed_runs=100, | |
num_warmup_runs=10, | |
min_time=60, | |
imgsz=640, | |
trt=True, | |
device=None): | |
self.paths = paths | |
self.num_timed_runs = num_timed_runs | |
self.num_warmup_runs = num_warmup_runs | |
self.min_time = min_time | |
self.imgsz = imgsz | |
self.trt = trt # run TensorRT profiling | |
self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu') | |
def profile(self): | |
files = self.get_files() | |
if not files: | |
print('No matching *.pt or *.onnx files found.') | |
return | |
table_rows = [] | |
output = [] | |
for file in files: | |
engine_file = file.with_suffix('.engine') | |
if file.suffix in ('.pt', '.yaml'): | |
model = YOLO(str(file)) | |
model.fuse() # to report correct params and GFLOPs in model.info() | |
model_info = model.info() | |
if self.trt and self.device.type != 'cpu' and not engine_file.is_file(): | |
engine_file = model.export(format='engine', | |
half=True, | |
imgsz=self.imgsz, | |
device=self.device, | |
verbose=False) | |
onnx_file = model.export(format='onnx', | |
half=True, | |
imgsz=self.imgsz, | |
simplify=True, | |
device=self.device, | |
verbose=False) | |
elif file.suffix == '.onnx': | |
model_info = self.get_onnx_model_info(file) | |
onnx_file = file | |
else: | |
continue | |
t_engine = self.profile_tensorrt_model(str(engine_file)) | |
t_onnx = self.profile_onnx_model(str(onnx_file)) | |
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info)) | |
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info)) | |
self.print_table(table_rows) | |
return output | |
def get_files(self): | |
files = [] | |
for path in self.paths: | |
path = Path(path) | |
if path.is_dir(): | |
extensions = ['*.pt', '*.onnx', '*.yaml'] | |
files.extend([file for ext in extensions for file in glob.glob(str(path / ext))]) | |
elif path.suffix in {'.pt', '.yaml'}: # add non-existing | |
files.append(str(path)) | |
else: | |
files.extend(glob.glob(str(path))) | |
print(f'Profiling: {sorted(files)}') | |
return [Path(file) for file in sorted(files)] | |
def get_onnx_model_info(self, onnx_file: str): | |
# return (num_layers, num_params, num_gradients, num_flops) | |
return 0.0, 0.0, 0.0, 0.0 | |
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3): | |
data = np.array(data) | |
for _ in range(max_iters): | |
mean, std = np.mean(data), np.std(data) | |
clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)] | |
if len(clipped_data) == len(data): | |
break | |
data = clipped_data | |
return data | |
def profile_tensorrt_model(self, engine_file: str): | |
if not self.trt or not Path(engine_file).is_file(): | |
return 0.0, 0.0 | |
# Model and input | |
model = YOLO(engine_file) | |
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32 | |
# Warmup runs | |
elapsed = 0.0 | |
for _ in range(3): | |
start_time = time.time() | |
for _ in range(self.num_warmup_runs): | |
model(input_data, imgsz=self.imgsz, verbose=False) | |
elapsed = time.time() - start_time | |
# Compute number of runs as higher of min_time or num_timed_runs | |
num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs * 50) | |
# Timed runs | |
run_times = [] | |
for _ in tqdm(range(num_runs), desc=engine_file): | |
results = model(input_data, imgsz=self.imgsz, verbose=False) | |
run_times.append(results[0].speed['inference']) # Convert to milliseconds | |
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping | |
return np.mean(run_times), np.std(run_times) | |
def profile_onnx_model(self, onnx_file: str): | |
check_requirements('onnxruntime') | |
import onnxruntime as ort | |
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' | |
sess_options = ort.SessionOptions() | |
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | |
sess_options.intra_op_num_threads = 8 # Limit the number of threads | |
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider']) | |
input_tensor = sess.get_inputs()[0] | |
input_type = input_tensor.type | |
# Mapping ONNX datatype to numpy datatype | |
if 'float16' in input_type: | |
input_dtype = np.float16 | |
elif 'float' in input_type: | |
input_dtype = np.float32 | |
elif 'double' in input_type: | |
input_dtype = np.float64 | |
elif 'int64' in input_type: | |
input_dtype = np.int64 | |
elif 'int32' in input_type: | |
input_dtype = np.int32 | |
else: | |
raise ValueError(f'Unsupported ONNX datatype {input_type}') | |
input_data = np.random.rand(*input_tensor.shape).astype(input_dtype) | |
input_name = input_tensor.name | |
output_name = sess.get_outputs()[0].name | |
# Warmup runs | |
elapsed = 0.0 | |
for _ in range(3): | |
start_time = time.time() | |
for _ in range(self.num_warmup_runs): | |
sess.run([output_name], {input_name: input_data}) | |
elapsed = time.time() - start_time | |
# Compute number of runs as higher of min_time or num_timed_runs | |
num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs) | |
# Timed runs | |
run_times = [] | |
for _ in tqdm(range(num_runs), desc=onnx_file): | |
start_time = time.time() | |
sess.run([output_name], {input_name: input_data}) | |
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds | |
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping | |
return np.mean(run_times), np.std(run_times) | |
def generate_table_row(self, model_name, t_onnx, t_engine, model_info): | |
layers, params, gradients, flops = model_info | |
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} Β± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} Β± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |' | |
def generate_results_dict(self, model_name, t_onnx, t_engine, model_info): | |
layers, params, gradients, flops = model_info | |
return { | |
'model/name': model_name, | |
'model/parameters': params, | |
'model/GFLOPs': round(flops, 3), | |
'model/speed_ONNX(ms)': round(t_onnx[0], 3), | |
'model/speed_TensorRT(ms)': round(t_engine[0], 3)} | |
def print_table(self, table_rows): | |
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU' | |
header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |' | |
separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|' | |
print(f'\n\n{header}') | |
print(separator) | |
for row in table_rows: | |
print(row) | |
if __name__ == '__main__': | |
# Benchmark all export formats | |
benchmark() | |
# Profiling models on ONNX and TensorRT | |
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']) | |