Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, NUM_THREADS, ops | |
from ultralytics.yolo.utils.checks import check_requirements | |
from ultralytics.yolo.utils.metrics import SegmentMetrics, box_iou, mask_iou | |
from ultralytics.yolo.utils.plotting import output_to_target, plot_images | |
from ultralytics.yolo.v8.detect import DetectionValidator | |
class SegmentationValidator(DetectionValidator): | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" | |
super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
self.args.task = 'segment' | |
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) | |
def preprocess(self, batch): | |
"""Preprocesses batch by converting masks to float and sending to device.""" | |
batch = super().preprocess(batch) | |
batch['masks'] = batch['masks'].to(self.device).float() | |
return batch | |
def init_metrics(self, model): | |
"""Initialize metrics and select mask processing function based on save_json flag.""" | |
super().init_metrics(model) | |
self.plot_masks = [] | |
if self.args.save_json: | |
check_requirements('pycocotools>=2.0.6') | |
self.process = ops.process_mask_upsample # more accurate | |
else: | |
self.process = ops.process_mask # faster | |
def get_desc(self): | |
"""Return a formatted description of evaluation metrics.""" | |
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', | |
'R', 'mAP50', 'mAP50-95)') | |
def postprocess(self, preds): | |
"""Postprocesses YOLO predictions and returns output detections with proto.""" | |
p = ops.non_max_suppression(preds[0], | |
self.args.conf, | |
self.args.iou, | |
labels=self.lb, | |
multi_label=True, | |
agnostic=self.args.single_cls, | |
max_det=self.args.max_det, | |
nc=self.nc) | |
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported | |
return p, proto | |
def update_metrics(self, preds, batch): | |
"""Metrics.""" | |
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): | |
idx = batch['batch_idx'] == si | |
cls = batch['cls'][idx] | |
bbox = batch['bboxes'][idx] | |
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions | |
shape = batch['ori_shape'][si] | |
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
self.seen += 1 | |
if npr == 0: | |
if nl: | |
self.stats.append((correct_bboxes, correct_masks, *torch.zeros( | |
(2, 0), device=self.device), cls.squeeze(-1))) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) | |
continue | |
# Masks | |
midx = [si] if self.args.overlap_mask else idx | |
gt_masks = batch['masks'][midx] | |
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:]) | |
# Predictions | |
if self.args.single_cls: | |
pred[:, 5] = 0 | |
predn = pred.clone() | |
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, | |
ratio_pad=batch['ratio_pad'][si]) # native-space pred | |
# Evaluate | |
if nl: | |
height, width = batch['img'].shape[2:] | |
tbox = ops.xywh2xyxy(bbox) * torch.tensor( | |
(width, height, width, height), device=self.device) # target boxes | |
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, | |
ratio_pad=batch['ratio_pad'][si]) # native-space labels | |
labelsn = torch.cat((cls, tbox), 1) # native-space labels | |
correct_bboxes = self._process_batch(predn, labelsn) | |
# TODO: maybe remove these `self.` arguments as they already are member variable | |
correct_masks = self._process_batch(predn, | |
labelsn, | |
pred_masks, | |
gt_masks, | |
overlap=self.args.overlap_mask, | |
masks=True) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(predn, labelsn) | |
# Append correct_masks, correct_boxes, pconf, pcls, tcls | |
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1))) | |
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) | |
if self.args.plots and self.batch_i < 3: | |
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot | |
# Save | |
if self.args.save_json: | |
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), | |
shape, | |
ratio_pad=batch['ratio_pad'][si]) | |
self.pred_to_json(predn, batch['im_file'][si], pred_masks) | |
# if self.args.save_txt: | |
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | |
def finalize_metrics(self, *args, **kwargs): | |
"""Sets speed and confusion matrix for evaluation metrics.""" | |
self.metrics.speed = self.speed | |
self.metrics.confusion_matrix = self.confusion_matrix | |
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False): | |
""" | |
Return correct prediction matrix | |
Arguments: | |
detections (array[N, 6]), x1, y1, x2, y2, conf, class | |
labels (array[M, 5]), class, x1, y1, x2, y2 | |
Returns: | |
correct (array[N, 10]), for 10 IoU levels | |
""" | |
if masks: | |
if overlap: | |
nl = len(labels) | |
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 | |
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) | |
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) | |
if gt_masks.shape[1:] != pred_masks.shape[1:]: | |
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] | |
gt_masks = gt_masks.gt_(0.5) | |
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) | |
else: # boxes | |
iou = box_iou(labels[:, 1:], detections[:, :4]) | |
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) | |
correct_class = labels[:, 0:1] == detections[:, 5] | |
for i in range(len(self.iouv)): | |
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match | |
if x[0].shape[0]: | |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), | |
1).cpu().numpy() # [label, detect, iou] | |
if x[0].shape[0] > 1: | |
matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
# matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
correct[matches[:, 1].astype(int), i] = True | |
return torch.tensor(correct, dtype=torch.bool, device=detections.device) | |
def plot_val_samples(self, batch, ni): | |
"""Plots validation samples with bounding box labels.""" | |
plot_images(batch['img'], | |
batch['batch_idx'], | |
batch['cls'].squeeze(-1), | |
batch['bboxes'], | |
batch['masks'], | |
paths=batch['im_file'], | |
fname=self.save_dir / f'val_batch{ni}_labels.jpg', | |
names=self.names, | |
on_plot=self.on_plot) | |
def plot_predictions(self, batch, preds, ni): | |
"""Plots batch predictions with masks and bounding boxes.""" | |
plot_images( | |
batch['img'], | |
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed | |
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, | |
paths=batch['im_file'], | |
fname=self.save_dir / f'val_batch{ni}_pred.jpg', | |
names=self.names, | |
on_plot=self.on_plot) # pred | |
self.plot_masks.clear() | |
def pred_to_json(self, predn, filename, pred_masks): | |
"""Save one JSON result.""" | |
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
from pycocotools.mask import encode # noqa | |
def single_encode(x): | |
"""Encode predicted masks as RLE and append results to jdict.""" | |
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] | |
rle['counts'] = rle['counts'].decode('utf-8') | |
return rle | |
stem = Path(filename).stem | |
image_id = int(stem) if stem.isnumeric() else stem | |
box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
pred_masks = np.transpose(pred_masks, (2, 0, 1)) | |
with ThreadPool(NUM_THREADS) as pool: | |
rles = pool.map(single_encode, pred_masks) | |
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): | |
self.jdict.append({ | |
'image_id': image_id, | |
'category_id': self.class_map[int(p[5])], | |
'bbox': [round(x, 3) for x in b], | |
'score': round(p[4], 5), | |
'segmentation': rles[i]}) | |
def eval_json(self, stats): | |
"""Return COCO-style object detection evaluation metrics.""" | |
if self.args.save_json and self.is_coco and len(self.jdict): | |
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations | |
pred_json = self.save_dir / 'predictions.json' # predictions | |
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
check_requirements('pycocotools>=2.0.6') | |
from pycocotools.coco import COCO # noqa | |
from pycocotools.cocoeval import COCOeval # noqa | |
for x in anno_json, pred_json: | |
assert x.is_file(), f'{x} file not found' | |
anno = COCO(str(anno_json)) # init annotations api | |
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]): | |
if self.is_coco: | |
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
idx = i * 4 + 2 | |
stats[self.metrics.keys[idx + 1]], stats[ | |
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 | |
except Exception as e: | |
LOGGER.warning(f'pycocotools unable to run: {e}') | |
return stats | |
def val(cfg=DEFAULT_CFG, use_python=False): | |
"""Validate trained YOLO model on validation data.""" | |
model = cfg.model or 'yolov8n-seg.pt' | |
data = cfg.data or 'coco128-seg.yaml' | |
args = dict(model=model, data=data) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).val(**args) | |
else: | |
validator = SegmentationValidator(args=args) | |
validator(model=args['model']) | |
if __name__ == '__main__': | |
val() | |