File size: 642 Bytes
aa0984e
597d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22


from transformers import pipeline
import gradio as gr


pipe = pipeline("text-classification", model="CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment")
textbox = gr.Textbox(label="ادخل الجملة")
textoutput1 = gr.Textbox(label="الشعور")
textoutput2 = gr.Textbox(label="الدقة")

#fuction that takes the text and returns 2 values(sentiment and confidence)
def get_sentiment(text):
    result = pipe(text)
    sentiment = result[0]['label']
    confidence = result[0]['score']
    return sentiment, confidence

#interface Gradio
gr.Interface(fn=get_sentiment, inputs=textbox, outputs=[textoutput1, textoutput2]).launch()