File size: 6,864 Bytes
b489094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Library
import openai
import streamlit as st
import pandas as pd
from datetime import datetime
from TTS.api import TTS
import whisper
from audio_recorder import record

# Custom Streamlit app title and icon
st.set_page_config(
    page_title="VietAI Bot",
    page_icon=":robot_face:",
)

# Set the title
st.title("[VietAI-NTI] ChatGPT")

# Sidebar Configuration
st.sidebar.title(":gear: Model Configuration")

# Set OPENAI API
openai.api_key = st.sidebar.text_input('Your OpenAI API key here:')

# User Input and AI Response
user_input_type = st.sidebar.selectbox("Choose input type:", ["Chat", "Record Audio"])

# Model Name Selector
model_name = st.sidebar.selectbox(
    "Select a Model",
    ["gpt-3.5-turbo", "gpt-4"],  # Add more model names as needed
    key="model_name",
)

# Temperature Slider
temperature = st.sidebar.slider(
    ":thermometer: Temperature",
    min_value=0.2,
    max_value=2.0,
    value=1.0,
    step=0.1,
    key="temperature",
)

# Max tokens Slider
max_tokens = st.sidebar.slider(
    ":straight_ruler: Max Tokens",
    min_value=1,
    max_value=4095,
    value=256,
    step=1,
    key="max_tokens",
)

# Top p Slider
# top_p = st.sidebar.slider(
#     "🎯 Top P",
#     min_value=0.00,
#     max_value=1.00,
#     value=1.00,
#     step=0.01,
#     key="top_p",
# )

# Presence penalty Slider
# presence_penalty = st.sidebar.slider(
#     "🚫 Presence penalty",
#     min_value=0.00,
#     max_value=2.00,
#     value=0.00,
#     step=0.01,
#     key="presence_penalty",
# )

# Frequency penalty Slider
# frequency_penalty = st.sidebar.slider(
#     "🤐 Frequency penalty",
#     min_value=0.00,
#     max_value=2.00,
#     value=0.00,
#     step=0.01,
#     key="frequency_penalty",
# )

# TEXT2SPEECH MODEL
# Instantiate the TTS class
tts = TTS(TTS().list_models()[13])
def convert_2_speech(given_text):
    tts.tts_to_file(text=given_text, file_path="response.wav")
    return("response.wav")

# SPEECH2TEXT MODEL
model_whisper = whisper.load_model("tiny.en")
def convert_2_text(speech):
    user_message = model_whisper.transcribe(speech)["text"]
    return user_message

# CHAT MODEL
# Initialize DataFrame to store chat history
chat_history_df = pd.DataFrame(columns=["Timestamp", "Chat"])

# Reset Button
if st.sidebar.button(":arrows_counterclockwise: Reset Chat"):
    # Save the chat history to the DataFrame before clearing it
    if st.session_state.messages:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        chat_history = "\n".join([f"{m['role']}: {m['content']}" for m in st.session_state.messages])
        new_entry = pd.DataFrame({"Timestamp": [timestamp], "Chat": [chat_history]})
        chat_history_df = pd.concat([chat_history_df, new_entry], ignore_index=True)

        # Save the DataFrame to a CSV file
        chat_history_df.to_csv("chat_history.csv", index=False)

    # Clear the chat messages and reset the full response
    st.session_state.messages = []
    full_response = ""
    
# Initialize Chat Messages
if "messages" not in st.session_state:
    st.session_state.messages = []

# Initialize full_response outside the user input check
full_response = ""

# Display Chat History
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


# User Input and AI Response
# For "Chat mode"
if user_input_type == "Chat":
    if prompt := st.chat_input("What is up?"):
        # System
        st.session_state.messages.append({"role": "system", "content": "You are a helpful assistant named Jarvis"})
        
        # User
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)
        
        # Assistant 
        with st.chat_message("assistant"):
            with st.status("Generating response..."):
                message_placeholder = st.empty()
                for response in openai.ChatCompletion.create(
                    model=model_name,  # Use the selected model name
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    temperature=temperature,  # Set temperature
                    max_tokens=max_tokens,  # Set max tokens
                    top_p=top_p, # Set top p
                    frequency_penalty=frequency_penalty, # Set frequency penalty
                    presence_penalty=presence_penalty, # Set presence penalty
                    stream=True,
                ):
                    full_response += response.choices[0].delta.get("content", "")
                    message_placeholder.markdown(full_response + "▌")
                message_placeholder.markdown(full_response)
            
            st.session_state.messages.append({"role": "assistant", "content": full_response})
            st.audio(convert_2_speech(full_response))

elif user_input_type == "Record Audio":
    # Record audio when the "Record Audio" button is clicked
    if st.button("Record Audio"):
        st.write("Recording... Please speak for 10 seconds.")
        output = record(seconds=10, filename='my_recording.wav')
        st.write("Recording complete!")

        # Convert the recorded audio to text using the Whisper model
        user_message = convert_2_text(output)

        # Display the transcribed text as user input
        st.session_state.messages.append({"role": "user", "content": user_message})
        with st.chat_message("user"):
            st.markdown(user_message)
        
        # Assistant 
        with st.chat_message("assistant"):
            with st.status("Generating response..."):
                message_placeholder = st.empty()
                for response in openai.ChatCompletion.create(
                    model=model_name,  # Use the selected model name
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    temperature=temperature,  # Set temperature
                    max_tokens=max_tokens,  # Set max tokens
                    top_p=top_p, # Set top p
                    frequency_penalty=frequency_penalty, # Set frequency penalty
                    presence_penalty=presence_penalty, # Set presence penalty
                    stream=True,
                ):
                    full_response += response.choices[0].delta.get("content", "")
                    message_placeholder.markdown(full_response + "▌")
                message_placeholder.markdown(full_response)
            
            st.session_state.messages.append({"role": "assistant", "content": full_response})
            st.audio(convert_2_speech(full_response))