Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the summarization & translation model pipeline | |
#tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048') | |
trans_pipe = pipeline("translation", model='liam168/trans-opus-mt-zh-en') | |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True) | |
#tokenizer = AutoTokenizer.from_pretrained('Howosn/Sentiment_Model', use_fast=False) | |
# Streamlit application title | |
st.title("Emotion analysis") | |
st.write("Turn Your Input Into Sentiment Score") | |
# Text input for the user to enter the text to analyze | |
text = st.text_area("Enter the text", "") | |
# Perform analysis result when the user clicks the "Analyse" button | |
if st.button("Analyse"): | |
# Perform text classification on the input text | |
trans = tran_pipe(text)[0] | |
results = sentiment_pipeline(trans)[0] | |
# Display the classification result | |
max_score = float('-inf') | |
max_label = '' | |
for result in results: | |
if result['score'] > max_score: | |
max_score = result['score'] | |
max_label = result['label'] | |
st.write("Text:", text) | |
st.write("Label:", max_label) | |
st.write("Score:", max_score) |