Howosn commited on
Commit
ea98eb5
·
verified ·
1 Parent(s): f2ca47e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ # Load the summarization & translation model pipeline
5
+ tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048',return_all_scores=True)
6
+ sentiment_pipeline = pipeline("text-classification", model="Howosn/Sentiment_Model",return_all_scores=True)
7
+
8
+ # Streamlit application title
9
+ st.title("Emotion analysis")
10
+ st.write("Turn Your Input Into Sentiment Score")
11
+
12
+ # Text input for the user to enter the text to analyze
13
+ text = st.text_area("Enter the text", "")
14
+
15
+ # Perform analysis result when the user clicks the "Analyse" button
16
+ if st.button("Analyse"):
17
+ # Perform text classification on the input text
18
+ trans_sum = tran_sum_pipe(text)[0]
19
+ results = sentiment_pipeline(trans_sum)[0]
20
+
21
+ # Display the classification result
22
+ max_score = float('-inf')
23
+ max_label = ''
24
+
25
+ for result in results:
26
+ if result['score'] > max_score:
27
+ max_score = result['score']
28
+ max_label = result['label']
29
+
30
+ st.write("Text:", text)
31
+ st.write("Label:", max_label)
32
+ st.write("Score:", max_score)