Spaces:
Sleeping
Sleeping
File size: 28,717 Bytes
15bcbe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Load text datasets for long-range transformer models."""
import os
import re
from typing import Any, Callable, Dict, Iterable, Mapping, Optional, Sequence, Set, Tuple, Union
from absl import flags
from absl import logging
import gin
import jax
from transformer import synthetic_text_data
import numpy as np
import seqio
import tensorflow.compat.v2 as tf
flags.DEFINE_string("default_data_dir", None,
"Default directory where data is stored.")
FLAGS = flags.FLAGS
_DEFAULT_DATA_DIRECTORY = None
@gin.configurable
def set_default_data_directory(directory_name=None):
"""Set the default directory where training data is located."""
global _DEFAULT_DATA_DIRECTORY
# If the data directory has been overridden with a command-line flag, use it.
# If not, the see if directory_name has been configured by Gin.
# Otherwise, use the default tfds directory.
if FLAGS.default_data_dir:
directory_name = FLAGS.default_data_dir
if directory_name is not None:
seqio.set_tfds_data_dir_override(directory_name)
_DEFAULT_DATA_DIRECTORY = directory_name
def get_iterator_function(dataset: Optional[tf.data.Dataset]):
"""Returns a function which gets an iterator over the given dataset."""
if dataset is None:
return None
else:
return dataset.as_numpy_iterator
@gin.configurable
def get_loss_mask_tokens(
split: str,
loss_mask_start_tokens: Sequence[int] = (),
loss_mask_end_tokens: Sequence[int] = (),
splits: Sequence[str] = ("all",)
) -> Tuple[Sequence[int], Sequence[int]]:
"""Returns two token sequences to indicate start and end of the loss.
Please configure loss_mask_start_tokens, loss_mask_end_tokens, and
split_filter via gin. Example gin config to only apply loss between tokens 2
and 1 for the test set (and everywhere for any other data split):
```
text_dataset.get_loss_mask_tokens:
loss_mask_start_tokens=(2,)
loss_mask_end_tokens=(1,)
restrict_to_splits=("test",)
```
Args:
split: The mode ("test", "train", ...)
loss_mask_start_tokens: token sequence to starts the loss
loss_mask_end_tokens: token sequence to stop the loss
splits: Only compute the loss mask for splits in this list.
By default it is 'all', which is a reserved split string that applies to
all splits.
"""
if "all" in splits or split in splits:
return loss_mask_start_tokens, loss_mask_end_tokens
return (), ()
@gin.configurable
def load_text_dataset(name: str,
split: str,
sequence_length: int,
batch_size: int,
sequential: bool = True,
shard_dataset: bool = True,
verbose: bool = False,
) -> Tuple[tf.data.Dataset, seqio.Vocabulary]:
"""Load a text dataset of long articles or books, and split_and_batch them.
The input dataset must produce complete books or articles, where each article
is a dictionary containing a "tokens" field.
See split_and_batch for more information on the output dataset.
Args:
name: The name of the seqio task which produces the dataset.
split: The name of the split to use, e.g. "train" or "test".
sequence_length: Split text into sequences of this length.
batch_size: Draw from batch_size articles in each batch.
sequential: If True, return the chunks of each article in sequence.
shard_dataset: If True, split data set into shards.
verbose: Log (an excerpt) of every text example loaded from disk. If False,
will only print 1 excerpt every 60 seconds.
Returns:
(dataset, vocabulary)
where vocabulary is the seqio.Vocabulary which is used to encode "targets".
"""
logging.info("Loading text data set %s, split=%s, shape=(%d, %d)",
name, split, batch_size, sequence_length)
if name == "synthetic":
ds = synthetic_data_long(split, sequence_length, batch_size)
return (ds, seqio.PassThroughVocabulary(256, 0))
elif name == "synthetic_short":
ds = synthetic_data_short(split, sequence_length, batch_size)
return (ds, seqio.PassThroughVocabulary(256, 0))
elif name == "enwik8":
# TODO(delesley): Encapsulate enwik8 into a Task.
ds = load_enwik8(split, sequence_length, batch_size,
data_dir=_DEFAULT_DATA_DIRECTORY)
return (ds, seqio.PassThroughVocabulary(256, 0))
# Bypass the seqio "feature converter", and get the task directly.
task = seqio.get_mixture_or_task(name)
vocab = task.output_features["targets"].vocabulary
# Create the task input pipeline.
if shard_dataset:
logging.info("Shards: %d of %d", jax.process_index(), jax.process_count())
shard_info = seqio.ShardInfo(index=jax.process_index(),
num_shards=jax.process_count())
else:
shard_info = None
if sequential:
task_seqlen = None # We do our own splitting.
shuffle_buffer_size = 1000 # Number of full-length books.
else:
task_seqlen = {"targets": sequence_length} # Ask the task to do splitting.
shuffle_buffer_size = 10_000 # Number of chunks.
ds = task.get_dataset(
sequence_length=task_seqlen,
split=split,
use_cached=False,
shuffle=True,
shuffle_buffer_size=shuffle_buffer_size,
seed=None,
shard_info=shard_info,
num_epochs=1)
if sequence_length == 0:
return (ds, vocab) # Don't chop into subsequences.
def extract_fn(article):
return article["targets"]
include_loss_mask = bool(get_loss_mask_tokens(split)[0])
ds = split_and_batch(ds,
split=split,
extract_fn=extract_fn,
sequence_length=sequence_length,
batch_size=batch_size,
auto_rewind=True,
vocab=vocab,
include_loss_mask=include_loss_mask,
verbose=verbose)
return (ds, vocab)
def rekey_articles(ds: tf.data.Dataset,
rekey: Mapping[str, str],
keep: Optional[Set[str]] = None) -> tf.data.Dataset:
"""Rekey the articles in ds.
Fields in rekey will be renamed, field in keep will be kept, others will
be discarded. E.g., For PG19:
rekey_article(ds,
rekey={"book_text": "targets"},
keep={"book_title", "book_id"})
Args:
ds: The dataset to rekey.
rekey: Dictionary which contains fields to rename.
keep: Set of fields to keep.
Returns:
A rekeyed dataset.
"""
def rekey_fn(article):
result_dict = {}
for (k, v) in article.items():
if k in rekey:
result_dict[rekey[k]] = v
elif k in keep:
result_dict[k] = v
return result_dict
return ds.map(rekey_fn)
def pretty_print_article(article,
vocab_map: Mapping[str, Optional[seqio.Vocabulary]],
max_length: int = 60) -> str:
"""Convert the contents of a long article to a short string."""
if not hasattr(article, "items"):
return pretty_print_value(article, max_length) # Not a dictionary.
dstr = "{"
for (k, v) in article.items():
if vocab_map and k in vocab_map:
vstr = decode_tokens(v, vocab_map[k], max_length)
else:
vstr = pretty_print_value(v, max_length)
dstr += "\n " + k + ": " + vstr
return dstr + "\n}"
def pretty_print_value(value, max_length: int) -> str:
"""Convert a possibly large value to a short string."""
if isinstance(value, bytes):
if len(value) <= max_length:
return str(value)
else:
return f"bytes[{len(value)}] " + str(value[:max_length]) + "..."
elif isinstance(value, str):
if len(value) <= max_length:
return value
else:
return f"str[{len(value)}] " + value[:max_length] + "..."
elif isinstance(value, np.ndarray):
vstr = f"ndarray({value.shape}, {value.dtype.str})"
if value.size <= (max_length / 4):
vstr += " = " + str(value)
return vstr
elif np.ndim(value) == 0:
return str(value) # Scalar data.
else:
return str(type(value))
def decode_tokens(tokens: Any, vocab: seqio.Vocabulary, max_length: int) -> str:
"""Convert tokens to a human-readable string."""
if isinstance(tokens, np.ndarray):
tstr = f"ndarray({tokens.shape}, {tokens.dtype.str}) = "
else:
tstr = f"{str(type(tokens))} = "
if np.ndim(tokens) == 1:
tstr += decode_tokens_1d(tokens, vocab, max_length)
elif np.ndim(tokens) == 2:
jtstr = ",\n ".join([decode_tokens_1d(s, vocab, max_length)
for s in tokens])
tstr += f"[\n {jtstr}\n ]"
else:
tstr = pretty_print_value(tokens, max_length)
return tstr
def decode_tokens_1d(tokens: Any, vocab: Any, max_length: int,
raw_string: bool = False) -> Union[str, bytes]:
"""Convert a 1D array of tokens to a human-readable string.
Args:
tokens: 1-dimensional array of integers.
vocab: The vocabulary to detokenize the array.
max_length: The maximum number of tokens to detokenize.
raw_string: If True, return the string as bytes.
If false, pretty print it (e.g. with "\n").
Returns:
The detokenized string.
"""
assert np.ndim(tokens) == 1
# The type of tokens is np.ndarray((sequence_length,), "int32")
# We have to convert this to an actual list of python integers, NOT numpy
# integers, or decode will blow up, and fail to marshall the data to C++.
dtoks = [int(i) for i in tokens[:max_length]]
tstr = vocab.decode(dtoks)
# Convert the decoded string to a byte string.
# PassThroughVocabulary returns a list, not a string.
if isinstance(tstr, str):
tstr = bytes(tstr.encode("utf-8"))
else:
tstr = bytes(tstr)
# If raw_string, return immediately.
if raw_string:
return tstr
# Otherwise format it for pretty-printing.
# Converting bytes to str will convert, e.g., newlines as "\n".
tstr = str(tstr)
if len(tokens) > max_length:
tstr += "..."
return tstr
def bytes_to_tokens(s: str):
"""Convert a byte string to an array of integers."""
return np.fromiter((char for char in s), count=len(s), dtype=np.int32)
def pad_chunk(s: Optional[np.ndarray], sequence_length: int):
"""Pad an array s out to the given sequence_length."""
if s is None:
return np.zeros(sequence_length, dtype=np.int32)
assert np.ndim(s) == 1
chunk_len = len(s)
assert chunk_len <= sequence_length
if chunk_len == sequence_length:
return s
else:
return np.pad(s, (0, sequence_length - chunk_len),
mode="constant", constant_values=0)
def split_article(tokens: np.ndarray, sequence_length: int, split: str,
include_loss_mask: bool) -> (
Iterable[Tuple[np.ndarray, np.ndarray]]):
"""Split an array into segments of length sequence_length."""
assert np.ndim(tokens) == 1
if include_loss_mask:
loss_mask = loss_mask_from_tokens(tokens, split)
for k in range(0, len(tokens), sequence_length):
segment = pad_chunk(tokens[k:k + sequence_length], sequence_length)
if include_loss_mask:
segment_loss_mask = pad_chunk(
loss_mask[k:k + sequence_length], sequence_length).astype(bool)
else:
segment_loss_mask = np.array(True, dtype=bool) # dummy mask
yield (segment, segment_loss_mask)
def nonzero_tokens(tokens: np.ndarray,
loss_mask: Optional[np.ndarray]) -> list[int]:
"""Removes tokens that are not predicted by the model."""
# TODO(delesley): Fix the model so that it predicts the first token.
# The language model doesn't predict the first token.
toks = [int(tokens[i]) for i in range(1, len(tokens))
if (tokens[i] != 0 and (loss_mask is None or loss_mask[i]))]
return toks
def _find_subsequence_idxs(sequence: np.ndarray, subsequence: Sequence[int]):
"""Returns the indices where `subsequence` occurs in `sequence`."""
subsequence = np.asarray(subsequence, dtype=np.int32)
# use np.where as an efficient way to iterate over the whole array; but we can
# only test for a single token, unfortunately.
potential_matches = np.where(sequence == subsequence[0])[0]
match_indices = []
for start_index in potential_matches:
if np.array_equal(sequence[start_index:start_index + len(subsequence)],
subsequence):
match_indices.append(start_index)
return match_indices
def loss_mask_from_tokens(tokens: np.ndarray, split: str) -> np.ndarray:
"""Compute a mask for language modelling loss using start and end tokens."""
assert np.ndim(tokens) == 1
tokens = tokens.astype(np.int32)
# Position offset of loss mask and target positions. Typically -1, which
# indicates that targets are shifted 1 position left compared to inputs.
offset = -1
start_tokens, end_tokens = get_loss_mask_tokens(split=split)
if not start_tokens:
# default to not masking out any loss
return np.ones_like(tokens, dtype=bool)
start = 0
end = len(tokens) # include end_tokens
start_indices = _find_subsequence_idxs(tokens, start_tokens)
if start_indices:
if end_tokens:
end_indices = _find_subsequence_idxs(tokens, end_tokens)
else:
end_indices = []
if len(start_indices) > 1 or len(end_indices) > 1:
logging.error("Multiple start or end tokens for loss mask: %s, %s",
start_indices, end_indices)
start = start_indices[0]
if end_indices and end_indices[0] >= start:
end = end_indices[0]
# We include the start_tokens and the end_tokens, which represents that the
# model must predict the location, the content, and the end of the
# subsequence.
start += offset
start = max(0, start) # to prevent offset creating negative indices
end += len(end_tokens) + offset
# Create the actual mask. Roughly equivalent to
# mask = np.array([i >= start && i <= end for i in range(len(tokens))])
mask = np.concatenate([
np.zeros((start,), dtype=bool),
np.ones((end - start,), dtype=bool),
np.zeros((len(tokens) - end,), dtype=bool)
])
return mask
def _batched_interleave_generator(
ds: tf.data.Dataset,
flat_map_func: Callable[[str], Iterable[Tuple[np.ndarray, np.ndarray]]],
post_map_func,
batch_size: int,
vocab: Optional[seqio.Vocabulary] = None,
include_loss_mask: bool = False,
auto_rewind: bool = False) -> Iterable[Dict[str, np.ndarray]]:
"""Generator which combines the interleave and batch dataset operations.
Given a set of articles from ds, flat_map_func is mapped over the articles
to break each article up into an iterable of chunks and their loss masks.
The generator will return the examples from each article in sequential order,
for transformer-XL style models that process long articles over multiple
training steps.
Articles are combined into batches of size batch_size, where each example in
the batch is pulled from a different article. When one article ends, the
generator will start pulling examples from the next article. The overall
result is similar to tf.Data.Dataset.interleave, except that interleave does
not always maintain the same order of articles. If this generator starts
pulling from article "foo" as the 3rd item in the batch, then consecutive
examples from "foo" will remain as the 3rd item until the article ends. This
guarantee is necessary to pass state from one training step to the next.
If auto_rewind, then the generator will automatically grab a new iterator
from ds at the end of the epoch, and increment the epoch counter. Otherwise,
it will yield empty datasets until all articles in the batch have been
completed.
Args:
ds: A dataset of articles.
flat_map_func: A function which returns an iterator over chunks of tokens
and the loss masks associated with those tokens.
post_map_func: A function which post-processes each item to fixed size.
batch_size: The number of articles in a batch.
vocab: The vocabulary to detokenize strings and count characters.
include_loss_mask: If true, will return a loss mask with the tokens.
auto_rewind: Automatically rewind ds at end of epoch.
Yields:
Batches of consecutive examples from articles.
Each example has type: {
"targets": int32[batch_size, sequence_length],
"start_of_sequence": bool[batch_size],
"epoch": int32[batch_size],
"loss_mask": bool[batch_size, sequence_length],
}
"""
ds_iter = ds.as_numpy_iterator()
document_start = [True] * batch_size # At start of each article.
readers = [None] * batch_size # Iterator for each article
still_reading = [True] * batch_size # End of current article?
item_epochs = [0] * batch_size # Epoch of the given item.
epoch = 0
# Main generator loop
while any(still_reading):
targets = [None] * batch_size
loss_mask = [None] * batch_size
for i in range(0, batch_size):
targets_i = None
loss_mask_i = None
while targets_i is None and still_reading[i]:
if readers[i] is not None:
try:
# Grab the next item from the article.
targets_i, loss_mask_i = next(readers[i])
except StopIteration:
# Article has ended; continue the while loop to grab a new one.
readers[i] = None
else:
# Grab the next article from ds if the current one has ended.
dsi = None
try:
dsi = iter(flat_map_func(next(ds_iter)))
except StopIteration:
logging.info("End of epoch %d.", epoch)
if auto_rewind:
epoch = epoch + 1
logging.info("Starting epoch %d.", epoch)
ds_iter = ds.as_numpy_iterator()
dsi = iter(flat_map_func(next(ds_iter)))
else:
still_reading[i] = False # No more articles on i
if dsi is not None:
# Start reading the new article.
# Continue while loop to grab the first chunk.
readers[i] = dsi
document_start[i] = True
item_epochs[i] = epoch
# post_map_func must handle None values, and return stackable np.arrays.
targets[i] = post_map_func(targets_i) # handles None
if include_loss_mask:
loss_mask[i] = post_map_func(loss_mask_i).astype(bool) # handles None
# If we've reached the end of all articles, stop immediately.
if not any(still_reading):
break
doc_start_orig = document_start.copy() # Return doc_start_orig.
for i in range(0, batch_size):
# Now that we've read an item, set /start/ to false for each reader.
document_start[i] = False
# Decode the tokenized segement back to characters, to count the number
# of characters for the bits-per-character computation.
num_chars = [0] * batch_size
nz_toks = [0] * batch_size
for i in range(0, batch_size):
lmask = loss_mask[i] if include_loss_mask else None
toks = nonzero_tokens(targets[i], lmask)
if vocab is not None:
bchars = decode_tokens_1d(toks, vocab, max_length=len(targets[i]),
raw_string=True)
num_chars[i] = len(bchars)
else:
num_chars[i] = len(toks)
nz_toks[i] = len(toks)
item = {
"targets": np.stack(targets),
"start_of_sequence": np.array(doc_start_orig),
"epoch": np.array(item_epochs),
"num_chars": np.stack(num_chars),
"nonzero_tokens": np.stack(nz_toks),
}
if include_loss_mask:
item["loss_mask"] = np.stack(loss_mask)
yield item
def split_and_batch(ds: tf.data.Dataset,
split: str,
extract_fn: Callable[[Any], Any],
sequence_length: int,
batch_size: int,
auto_rewind: bool = False,
vocab: Optional[seqio.Vocabulary] = None,
include_loss_mask: bool = False,
verbose: bool = False) -> tf.data.Dataset:
"""Converts articles to tokens and chops and batches them.
See batched_interleave_generator for more details.
Args:
ds: A dataset of articles.
split: Which dataset split is to be computed, e.g. 'train'.
extract_fn: Return a sequence of tokens from article.
sequence_length: The number of tokens in each sequence.
batch_size: The number of examples in each batch.
auto_rewind: If True, will automatically rewind at end of epoch.
vocab: Vocabulary, used to count characters.
include_loss_mask: Return a loss mask for each batch.
verbose: Write article info to log as they are read.
Returns:
A dataset which yields examples of shape {
"targets": int32[batch_size, sequence_length],
"start_of_sequence": bool[batch_size],
"epoch": int32[batch_size],
"loss_mask": bool[batch_size, sequence_length],
"num_chars": A count of the number of detokenized characters.
"nonzero_tokens": A count of the number of nonzero predicted tokens.
}
"""
# Tokenize article, compute loss mask, split into multiple chunks.
# The entire article must fit into memory.
def wrap_split_article(article):
if verbose:
logging.info("Reading article: %s", pretty_print_article(article, {}))
else:
logging.log_every_n_seconds(logging.INFO, "Reading article: %s", 60,
pretty_print_article(article, {}))
tokens = extract_fn(article)
if isinstance(tokens, str) or isinstance(tokens, bytes):
tokens = bytes_to_tokens(tokens)
elif isinstance(tokens, np.ndarray):
tokens = tokens.astype(np.int32)
else:
raise TypeError("Unusupported sequence type: %s" % str(type(tokens)))
return split_article(tokens, sequence_length, split=split,
include_loss_mask=include_loss_mask)
# Handle None values.
def wrap_pad_chunk(s):
return pad_chunk(s, sequence_length)
def wrap_batched_interleave_generator():
return _batched_interleave_generator(ds,
flat_map_func=wrap_split_article,
post_map_func=wrap_pad_chunk,
batch_size=batch_size,
vocab=vocab,
include_loss_mask=include_loss_mask,
auto_rewind=auto_rewind)
out_sig = {
"targets": tf.TensorSpec(shape=(batch_size, sequence_length),
dtype=tf.int32),
"start_of_sequence": tf.TensorSpec(shape=(batch_size,), dtype=tf.bool),
"epoch": tf.TensorSpec(shape=(batch_size,), dtype=tf.int32),
"num_chars": tf.TensorSpec(shape=(batch_size,), dtype=tf.int32),
"nonzero_tokens": tf.TensorSpec(shape=(batch_size,), dtype=tf.int32),
}
if include_loss_mask:
out_sig["loss_mask"] = tf.TensorSpec(shape=(batch_size, sequence_length),
dtype=tf.bool)
cds = tf.data.Dataset.from_generator(wrap_batched_interleave_generator,
output_signature=out_sig)
return cds
def merge_articles(article_starts_ends, sequence_length):
"""Merge consecutive articles if their combined length < sequence_length."""
cs = 0
ce = 0
for (s, e) in article_starts_ends:
if ce == 0:
ce = s
if (e - cs) > sequence_length:
if ce > cs:
# print("Yield: ", cs, " to ", ce)
yield (cs, ce) # Yield prior merged articles
cs = s # Reset to start of current article
ce = e
else:
ce = e # Merge article with current set.
# print("Article: ", s, " to ", e)
if ce > 0:
# print("Yield: ", cs, " to ", ce)
yield (cs, ce) # Yield final merged set.
def _targets_to_tokens(article):
return bytes_to_tokens(article["targets"])
def _wrap_text_in_dict(text):
return {"targets": text}
# ---------------------
def load_enwik8(split: str,
sequence_length: int,
batch_size: int,
data_dir: str) -> tf.data.Dataset:
"""Load the enwik8 dataset, partitioning into articles."""
if data_dir is None:
raise ValueError("Must specify a data directory for enwik8")
filename = os.path.join(data_dir, "enwik8")
filename = os.path.join(filename, "enwik8_" + split)
# Don't attempt to split the data, just shuffle it differently for
# each worker.
local_seed = 42 + jax.process_index()
logging.info("Enwik8: reading %s", filename)
with gfile.Open(filename, "r") as f:
text_data = f.read()
logging.info("Enwik8: parsing %s", filename)
article_starts = [m.start(0) for m in re.finditer("<page>", text_data)]
article_ends = article_starts[1:] + [len(text_data)]
logging.info("Enwik8: found %d articles.", len(article_starts))
merged_se = merge_articles(zip(article_starts, article_ends),
sequence_length)
articles = [text_data[s:e] for (s, e) in merged_se]
num_articles = len(articles)
logging.info("Enwik8: merged into %d articles.", num_articles)
logging.info("Building dataset.")
ds = tf.data.Dataset.from_tensor_slices(articles)
ds = ds.map(_wrap_text_in_dict)
ds = ds.shuffle(num_articles, reshuffle_each_iteration=True, seed=local_seed)
if sequence_length == 0:
return ds # Don't split and batch
return split_and_batch(ds,
split=split,
extract_fn=_targets_to_tokens,
sequence_length=sequence_length,
batch_size=batch_size,
auto_rewind=True,
verbose=False)
# ---------------------
def synthetic_data_short(split: str,
sequence_length: int,
batch_size: int,
auto_rewind: bool = True) -> tf.data.Dataset:
"""Return a synthetic data set of sequences."""
strings = [
b"The quick brown fox jumped over the lazy dog.",
b"Humpty dumpty sat on a wall and had a great fall and went splat.",
b"She sells sea shells by the sea shore.",
b"Peter piper picked a peck of pickled peppercorns."
]
logging.info("Building synthetic dataset (short).")
ds = tf.data.Dataset.from_tensor_slices(strings)
ds = ds.map(_wrap_text_in_dict)
ds = ds.shuffle(4, reshuffle_each_iteration=True, seed=42)
if sequence_length == 0:
return ds # Don't split and batch
return split_and_batch(ds,
split=split,
extract_fn=_targets_to_tokens,
sequence_length=sequence_length,
batch_size=batch_size,
auto_rewind=auto_rewind,
verbose=False)
def synthetic_data_long(split: str,
sequence_length: int,
batch_size: int,
auto_rewind: bool = True) -> tf.data.Dataset:
"""Returns a synthetic data set with several long articles."""
articles = [
synthetic_text_data.text1_illiad_book1,
synthetic_text_data.text2_huckleberry_finn,
synthetic_text_data.text3_call_of_the_wild,
synthetic_text_data.text4_the_prince
]
logging.info("Building synthetic dataset (long).")
ds = tf.data.Dataset.from_tensor_slices(articles)
ds = ds.map(_wrap_text_in_dict)
ds = ds.shuffle(4, reshuffle_each_iteration=True, seed=42)
if sequence_length == 0:
return ds # Don't split and batch
return split_and_batch(ds,
split=split,
extract_fn=_targets_to_tokens,
sequence_length=sequence_length,
batch_size=batch_size,
auto_rewind=auto_rewind,
verbose=False)
|