GeoGenSolve / aglib /meliad /transformer /transformer_base.py
HugoVoxx's picture
Upload 20 files
15bcbe6 verified
raw
history blame
17.3 kB
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base class for transformer layers."""
from typing import Any, Callable, Optional, Tuple
from absl import logging
from flax import linen as nn
import gin
import jax
import jax.numpy as jnp
from transformer import nn_components
Array = Any
# Tuple of scale factors
AttnScaleTuple = Tuple[Optional[Array], Optional[Array]]
# Tuple of keys,values,queries
KVQTuple = Tuple[Array, Array, Optional[Array], Optional[Array]]
@gin.configurable
class KVQLayer(nn.Module):
"""Generate keys, values, and queries for attention."""
embedding_size: int
num_heads: int
head_size: int
has_queries: bool = True
has_queries2: bool = False # For cross-attention, e.g. decoder or recurrence.
normalize_keys: bool = True # Normalize keys and queries.
num_position_embeddings: int = 0 # Learned absolute position embeddings.
pre_attn_dropout: bool = True
dropout_rate: float = 0.0
dtype: Any = jnp.float32
def setup(self):
kernel_init = nn.initializers.variance_scaling(
scale=1.0, mode="fan_in", distribution="truncated_normal")
# Project to keys,values,queries
# Disable bias. This prevents a failure mode whereby the attention matrix
# can become filled with very large uniform values, due to high bias.
self.keys_layer = nn.Dense(
features=self.num_heads * self.head_size,
use_bias=False, # No bias for keys.
kernel_init=kernel_init,
dtype=self.dtype)
self.values_layer = nn.Dense(
features=self.num_heads * self.head_size,
use_bias=False, # No bias for values.
kernel_init=kernel_init,
dtype=self.dtype)
if self.has_queries:
self.queries_layer = nn.Dense(
features=self.num_heads * self.head_size,
use_bias=False, # No bias for queries.
kernel_init=kernel_init,
dtype=self.dtype)
if self.has_queries2:
self.queries2_layer = nn.Dense(
features=self.num_heads * self.head_size,
use_bias=False, # No bias for queries.
kernel_init=kernel_init,
dtype=self.dtype)
# When normalizing keys and queries, attention must be scaled with
# learned parameters.
if self.normalize_keys:
self.attention_scale = self.param("attention_scale",
jax.nn.initializers.ones,
(self.num_heads,), jnp.float32)
# Learned position embeddings for absolute positions.
if self.num_position_embeddings > 0:
# Embeddings for query elements.
self.position_embeddings = self.param(
"position_embeddings",
jax.nn.initializers.normal(stddev=1.0),
(self.num_position_embeddings, self.embedding_size),
jnp.float32)
# Layernorm
self.pre_attn_layernorm = nn_components.LayerNorm()
def attention_scale_factor(self) -> Optional[Array]:
"""Returns the attention scale, when keys and queries are normalized."""
if self.normalize_keys:
return jnp.asarray(self.attention_scale, dtype=self.dtype)
else:
return None
def _get_dropout_rng(self):
return self.make_rng("dropout")
def _normalize_kq(self, kq: Array) -> Array:
"""Normalize function for keys and queries."""
epsilon = jnp.array(1.0e-6, dtype=self.dtype)
kq_sum_sqr = jnp.sum(jnp.square(kq), axis=-1, keepdims=True)
norm_kq = kq * jax.lax.rsqrt(kq_sum_sqr + epsilon)
return jnp.asarray(norm_kq, dtype=self.dtype)
def __call__(self, xs: Array, deterministic: bool = False) -> KVQTuple:
"""Takes a sequence of embeddings as input, and returns keys,values,queries.
First apply pre_attn layernorm, and pre_attn dropout.
Then add learned positional embeddings, if any.
Return (keys, values, queries, queries2).
Args:
xs: input sequence of shape (batch_size, sequence_length, embedding_size)
deterministic: if False, apply dropout.
Returns:
(keys, values, queries, queries2) of shape
(batch_size, sequence_length, num_heads, head_size)
"""
# Project inputs to (keys, values, queries).
(batch_size, num_keys, _) = xs.shape
drop_tile_shape = (1, 128, self.embedding_size)
# Apply layernorm to input, rather than the output.
# This provides better gradients through the resnet, and also avoids
# the need for a prolonged warmup phase (https://arxiv.org/abs/2002.04745)
# Layernorm for self-attention.
logging.info("kvq: pre_attn xs = %r", xs)
xs = jnp.asarray(xs, dtype=self.dtype)
xs = self.pre_attn_layernorm(xs)
# Add (optional) learned position embeddings.
if self.num_position_embeddings > 0:
assert xs.ndim == 3 # (b, sequence_length, embedding_size)
assert xs.shape[-2] == self.num_position_embeddings
logging.info("kvq: learned positions.")
xs_pos = jnp.asarray(self.position_embeddings, dtype=self.dtype)
xs_pos = jnp.expand_dims(xs_pos, 0) # Add batch dimension.
xs = xs + xs_pos
# Pre-attention dropout.
if self.pre_attn_dropout:
logging.info("kvq: pre_attn dropout.")
xs = nn_components.tiled_dropout(xs, drop_tile_shape, self.dropout_rate,
rng_function=self._get_dropout_rng,
deterministic=deterministic)
# Compute keys and values.
keys = self.keys_layer(xs) # (b, num_keys, num_heads * head_size)
values = self.values_layer(xs)
# Compute queries and cross-attention queries if necessary.
if self.has_queries:
queries = self.queries_layer(xs) # (b, num_keys, n_heads * head_size)
logging.info("kvq: queries = %r", queries)
else:
queries = None
if self.has_queries2:
queries2 = self.queries2_layer(xs) # (b, num_keys, n_heads * head_size)
logging.info("kvq: queries2 = %r", queries2)
else:
queries2 = None
# Reshape to split num_heads, head_size into separate dimensions.
kv_shape = (batch_size, num_keys, self.num_heads, self.head_size)
keys = jnp.reshape(keys, kv_shape)
values = jnp.reshape(values, kv_shape)
if queries is not None:
queries = jnp.reshape(queries, kv_shape)
if queries2 is not None:
queries2 = jnp.reshape(queries2, kv_shape)
if self.normalize_keys:
# Normalize both keys and queries.
# The learned attention_scale_factors() will return non-None.
logging.info("kvq: normalize keys, queries.")
keys = self._normalize_kq(keys)
if queries is not None:
queries = self._normalize_kq(queries)
if queries2 is not None:
queries2 = self._normalize_kq(queries2)
else:
# Scale queries by 1 / sqrt(d) when using unnormalized keys,queries.
d_scale = jax.lax.rsqrt(float(self.head_size)).astype(self.dtype)
logging.info("kvq: scale queries by 1/sqrt(d).")
if queries is not None:
queries = queries * d_scale
if queries2 is not None:
queries2 = queries2 * d_scale
# Return keys, values, and queries.
return (keys, values, queries, queries2)
@gin.configurable
class TransformerBase(nn.Module):
"""TransformerBase implements everything except attention.
It handles:
- Projection to (keys, values, queries) before attention.
- Projection MLP back to embedding_size after attention.
- Final FFN layer.
- layernorm, dropout, and normalization of keys and queries.
This functionality is ecapsulated here so that it can be reused with more
complicated attention mechanisms.
"""
# Options set by parent module.
mode: str
embedding_size: int
num_heads: int
head_size: int
cross_attention_q: bool = False # Additional q for cross-attention.
cross_attention_kv: bool = False # Additional kv for cross-attention.
num_position_embeddings: int = 0 # Learned position embeddings.
num_cross_position_embeddings: int = 0 # Learned position embeddings.
# Configurable hyperparameters.
attn_mlp_factory: Callable[[int], nn.Module] = gin.REQUIRED
ffn_factory: Callable[[int], nn.Module] = gin.REQUIRED
gate_type: str = "residual"
single_gate: bool = False
skip_ffn: bool = False
normalize_keys: bool = True
dropout_rate: float = 0.0
pre_attn_dropout: bool = True
post_attn_dropout: bool = False
pre_ffn_dropout: bool = False
post_ffn_dropout: bool = True
dtype: Any = jnp.float32
def is_training(self) -> bool:
return self.mode == "train"
def _get_dropout_rng(self):
return self.make_rng("dropout")
def _normalize_kq(self, kq: Array) -> Array:
"""Normalize function for keys and queries."""
epsilon = jnp.array(1.0e-6, dtype=self.dtype)
kq_sum_sqr = jnp.sum(jnp.square(kq), axis=-1, keepdims=True)
norm_kq = kq * jax.lax.rsqrt(kq_sum_sqr + epsilon)
return jnp.asarray(norm_kq, dtype=self.dtype)
def setup(self):
# Keys,values,queries for self-attention; queries for cross-attention.
self._kvq = KVQLayer(self.embedding_size, self.num_heads, self.head_size,
has_queries=True,
has_queries2=self.cross_attention_q,
num_position_embeddings=self.num_position_embeddings,
normalize_keys=self.normalize_keys,
pre_attn_dropout=self.pre_attn_dropout,
dropout_rate=self.dropout_rate,
dtype=self.dtype)
# Keys,values, attention_scale for cross-attention.
if self.cross_attention_kv:
# Use a full kvq layer, with layernorm and attention scale.
self._cross_kv = KVQLayer(
self.embedding_size, self.num_heads, self.head_size,
has_queries=False,
has_queries2=False,
num_position_embeddings=self.num_cross_position_embeddings,
normalize_keys=self.normalize_keys,
pre_attn_dropout=self.pre_attn_dropout,
dropout_rate=self.dropout_rate,
dtype=self.dtype)
elif self.cross_attention_q:
# No separate keys,values for cross-attention, but we may still need
# cross-attention-scale, so we create our own.
assert self.num_cross_position_embeddings == 0
if self.normalize_keys:
self.attention_scale2 = self.param("attention_scale2",
jax.nn.initializers.ones,
(self.num_heads,), jnp.float32)
# Post-attention linear projection.
if not self.single_gate:
self.post_attn_mlp = self.attn_mlp_factory(
self.embedding_size,
gate_type=self.gate_type,
final_activation=None,
dtype=self.dtype) # pytype: disable=wrong-keyword-args # trace-all-classes
# Final FNN.
if not self.skip_ffn:
self.ffn = self.ffn_factory(
self.embedding_size,
gate_type=self.gate_type,
final_activation=("tanh" if self.single_gate else None),
dtype=self.dtype) # pytype: disable=wrong-keyword-args # trace-all-classes
# Layernorm.
self.pre_ffn_layernorm = nn_components.LayerNorm()
def force_init(self, xs: Array):
"""Force flax initialization of self, prior to use with lax.scan.
Args:
xs: The input sequence that the module will be called with.
"""
logging.info("tbase: Begin forced initialization.")
_ = self.kvq(xs)
batch_size = xs.shape[0]
seq_len = xs.shape[1]
attn_ys_shape = (batch_size, seq_len, self.num_heads, self.head_size)
dummy_attn_ys = jnp.zeros(attn_ys_shape, dtype=self.dtype)
if self.cross_attention_kv or self.cross_attention_q:
dummy_cross_attn_ys = dummy_attn_ys
else:
dummy_cross_attn_ys = None
_ = self.post_attn_ffn(xs, dummy_attn_ys, dummy_cross_attn_ys)
logging.info("tbase: End forced initialization.")
def attention_scale_factors(self) -> AttnScaleTuple:
"""Returns the attention scales, when keys and queries are normalized.
Returns: (scale for kv (i.e. queries), scale for cross_kv (i.e queries2))
"""
sfactor = self._kvq.attention_scale_factor()
if self.cross_attention_kv:
cross_sfactor = self._cross_kv.attention_scale_factor()
elif self.cross_attention_q and self.normalize_keys:
cross_sfactor = jnp.asarray(self.attention_scale2, dtype=self.dtype)
else:
cross_sfactor = None
return (sfactor, cross_sfactor)
def kvq(self, xs: Array) -> KVQTuple:
enable_dropout = self.pre_attn_dropout and self.is_training()
return self._kvq(xs, deterministic=not enable_dropout)
def cross_kv(self, xs: Array) -> Tuple[Array, Array]:
assert self.cross_attention_kv
enable_dropout = self.pre_attn_dropout and self.is_training()
(k, v, _, _) = self._cross_kv(xs, deterministic=not enable_dropout)
return (k, v)
def post_attn_ffn(self, xs: Array, attn_ys: Array,
cross_attn_ys: Optional[Array]) -> Array:
"""Combines the output of attention with the original input sequence.
Post-attn MLP on attn_ys, followed by resnet/gate.
Pre-FFN layernorm and dropout, then the FFN layer, followed by resnet/gate.
Args:
xs: Original input sequence of shape
(batch_size, sequence_length, embedding_size)
attn_ys: Output of the self-attention module, of shape
(batch_size, sequence_length, num_heads, head_size)
cross_attn_ys: Output of the cross-attention module, of shape
(batch_size, sequence_length, num_heads, head_size)
Returns:
Array of shape (batch_size, sequence_length, embedding_size)
"""
(batch_size, sequence_length, _) = xs.shape
assert attn_ys.shape == (batch_size, sequence_length,
self.num_heads, self.head_size)
no_dropout = not self.is_training()
drop_tile_shape = (1, 128, self.embedding_size)
# Concatenate cross-attention and self-attention results.
if cross_attn_ys is not None:
# Concatenate self-attention and cross-attention results, before
# applying the projection layer.
logging.info("tbase: using cross-attention.")
assert attn_ys.shape == (batch_size, sequence_length,
self.num_heads, self.head_size)
attn_ys = jnp.concatenate([attn_ys, cross_attn_ys], axis=2)
att_ys_num_heads = self.num_heads * 2
else:
# Only use self-attention.
att_ys_num_heads = self.num_heads
logging.info("tbase: attn_ys = %r", attn_ys)
attn_ys = attn_ys.reshape(
(batch_size, sequence_length, att_ys_num_heads * self.head_size))
if self.single_gate:
logging.info("tbase: single gate.")
assert not self.skip_ffn
# Skip post-attention linear projection and residual connection.
ys_hidden = xs # The FFN (below) will be gated onto xs (the input).
ffn_in = attn_ys # The input to the FFN is the output of attention.
else:
logging.info("tbase: post-attention MLP.")
# Standard transformer archicture.
# The post-attention MLP applies a linear projection to project attn_ys
# to embedding space. It then uses a residual connection or gate to
# combine the projection with xs. Post-attention dropout is applied
# before the residual/gate.
post_attn_ys = self.post_attn_mlp(
attn_ys, xs,
apply_dropout=self.post_attn_dropout and not no_dropout,
dropout_rate=self.dropout_rate,
drop_tile_shape=drop_tile_shape,
rng_function=self._get_dropout_rng)
# The FFN (below) will be gated onto post_attn_ys (which gates onto xs).
ys_hidden = post_attn_ys
if self.skip_ffn:
logging.info("tbase: skip final FFN. ys = %r", ys_hidden)
return ys_hidden
# The input to the FFN; Layernorm is applied before the FFN.
ffn_in = self.pre_ffn_layernorm(ys_hidden)
logging.info("tbase: pre-FFN layernorm = %r", ffn_in)
# Pre-FFN dropout.
if self.pre_ffn_dropout:
logging.info("tbase: pre-FFN dropout.")
ffn_in = nn_components.tiled_dropout(
ffn_in, drop_tile_shape, self.dropout_rate,
rng_function=self._get_dropout_rng, deterministic=no_dropout)
# FFN layer.
# Large MLP with hidden layers followed by residual connection or gate.
# The MLP will apply post-ffn dropout before the gate.
logging.info("tbase: final FFN")
ys = self.ffn(ffn_in, ys_hidden,
apply_dropout=self.post_ffn_dropout and not no_dropout,
dropout_rate=self.dropout_rate,
drop_tile_shape=drop_tile_shape,
rng_function=self._get_dropout_rng)
logging.info("tbase: ys = %r", ys)
return ys