Spaces:
Sleeping
Sleeping
++ BATCH_SIZE=4 | |
++ BEAM_SIZE=256 | |
++ DEPTH=16 | |
++ OUTFILE=ag.out | |
+++ pwd | |
++ PROB_FILE=/home/tong_peng/pyvenv/alphageometry/myexamples.txt | |
++ PROB=castillon_4p | |
++ MODEL=alphageometry | |
++ DATA=ag_ckpt_vocab | |
++ MELIAD_PATH=meliad_lib/meliad | |
++ export PYTHONPATH=:meliad_lib/meliad | |
++ PYTHONPATH=:meliad_lib/meliad | |
++ DDAR_ARGS=(--defs_file=$(pwd)/defs.txt --rules_file=$(pwd)/rules.txt) | |
+++ pwd | |
+++ pwd | |
++ SEARCH_ARGS=(--beam_size=$BEAM_SIZE --search_depth=$DEPTH) | |
++ LM_ARGS=(--ckpt_path=$DATA --vocab_path=$DATA/geometry.757.model --gin_search_paths=$MELIAD_PATH/transformer/configs --gin_file=base_htrans.gin --gin_file=size/medium_150M.gin --gin_file=options/positions_t5.gin --gin_file=options/lr_cosine_decay.gin --gin_file=options/seq_1024_nocache.gin --gin_file=geometry_150M_generate.gin --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True --gin_param=TransformerTaskConfig.batch_size=$BATCH_SIZE --gin_param=TransformerTaskConfig.sequence_length=128 --gin_param=Trainer.restore_state_variables=False) | |
++ echo :meliad_lib/meliad | |
++ python -m alphageometry --alsologtostderr --problems_file=/home/tong_peng/pyvenv/alphageometry/myexamples.txt --problem_name=castillon_4p --mode=alphageometry --defs_file=/home/tong_peng/pyvenv/alphageometry/defs.txt --rules_file=/home/tong_peng/pyvenv/alphageometry/rules.txt --beam_size=256 --search_depth=16 --ckpt_path=ag_ckpt_vocab --vocab_path=ag_ckpt_vocab/geometry.757.model --gin_search_paths=meliad_lib/meliad/transformer/configs --gin_file=base_htrans.gin --gin_file=size/medium_150M.gin --gin_file=options/positions_t5.gin --gin_file=options/lr_cosine_decay.gin --gin_file=options/seq_1024_nocache.gin --gin_file=geometry_150M_generate.gin --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True --gin_param=TransformerTaskConfig.batch_size=4 --gin_param=TransformerTaskConfig.sequence_length=128 --gin_param=Trainer.restore_state_variables=False --out_file=ag.out | |
I0204 15:41:01.128032 139642560315392 graph.py:498] castillon_4p | |
I0204 15:41:01.128285 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c ? cong e f e o | |
I0204 15:42:34.936169 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 15:42:34.936503 139642560315392 alphageometry.py:539] Depth 0. There are 1 nodes to expand: | |
I0204 15:42:34.936591 139642560315392 alphageometry.py:543] {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 | |
I0204 15:42:34.936649 139642560315392 alphageometry.py:548] Decoding from {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 | |
I0204 15:46:26.592027 139642560315392 alphageometry.py:566] Translation: "p = on_line p m l, on_bline p l m" | |
I0204 15:46:26.592694 139642560315392 graph.py:498] | |
I0204 15:46:26.592885 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p m l, on_bline p l m ? cong e f e o | |
I0204 15:48:34.950014 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 15:48:34.950472 139642560315392 alphageometry.py:566] Translation: "p = on_line p k l, on_bline p l k" | |
I0204 15:48:34.950905 139642560315392 graph.py:498] | |
I0204 15:48:34.951006 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p k l, on_bline p l k ? cong e f e o | |
I0204 15:50:36.427841 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 15:50:36.428340 139642560315392 alphageometry.py:566] Translation: "p = on_line p f g, on_bline p g f" | |
I0204 15:50:36.428967 139642560315392 graph.py:498] | |
I0204 15:50:36.429156 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p f g, on_bline p g f ? cong e f e o | |
I0204 15:52:45.975893 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 15:52:45.976284 139642560315392 alphageometry.py:566] Translation: "p = on_line p k l, on_circle p k l" | |
I0204 15:52:45.976680 139642560315392 graph.py:498] | |
I0204 15:52:45.976783 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p k l, on_circle p k l ? cong e f e o | |
I0204 15:54:36.985071 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 15:54:36.985389 139642560315392 alphageometry.py:539] Depth 1. There are 4 nodes to expand: | |
I0204 15:54:36.985542 139642560315392 alphageometry.py:543] {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 p : C m l p 18 D m p l p 19 ; x00 | |
I0204 15:54:36.985688 139642560315392 alphageometry.py:543] {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 p : C k l p 18 D k p l p 19 ; x00 | |
I0204 15:54:36.985815 139642560315392 alphageometry.py:543] {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 p : C f g p 18 D f p g p 19 ; x00 | |
I0204 15:54:36.985927 139642560315392 alphageometry.py:543] {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 p : C k l p 18 D k l k p 19 ; x00 | |
I0204 15:54:36.986042 139642560315392 alphageometry.py:548] Decoding from {S} a : ; b : ; c : ; d : ; e : ; f : ; g : C a f g 00 D e f e g 01 ; h : C a b h 02 O b f g h 03 ; i : C d f i 04 D e f e i 05 ; j : C c d j 06 O c f i j 07 ; k : C a b k 08 C c d k 09 ; l : D e f e l 10 O h j k l 11 ; m : C a l m 12 D e f e m 13 ; n : C d l n 14 D e f e n 15 ; o : C b m o 16 C c n o 17 ? D e f e o {F1} x00 p : C m l p 18 D m p l p 19 ; x00 | |
I0204 15:57:42.645735 139642560315392 alphageometry.py:566] Translation: "q = on_line q k l, on_bline q l k" | |
I0204 15:57:42.646229 139642560315392 graph.py:498] | |
I0204 15:57:42.646357 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p m l, on_bline p l m; q = on_line q k l, on_bline q l k ? cong e f e o | |
I0204 16:00:04.265960 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 16:00:04.266489 139642560315392 alphageometry.py:566] Translation: "q = on_line q b l, on_bline q l b" | |
I0204 16:00:04.267304 139642560315392 graph.py:498] | |
I0204 16:00:04.267570 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p m l, on_bline p l m; q = on_line q b l, on_bline q l b ? cong e f e o | |
I0204 16:02:36.520836 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 16:02:36.521435 139642560315392 alphageometry.py:566] Translation: "q = on_line q l n, on_bline q n l" | |
I0204 16:02:36.522110 139642560315392 graph.py:498] | |
I0204 16:02:36.522347 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p m l, on_bline p l m; q = on_line q l n, on_bline q n l ? cong e f e o | |
I0204 16:05:21.532783 139642560315392 alphageometry.py:221] DD+AR failed to solve the problem. | |
I0204 16:05:21.533322 139642560315392 alphageometry.py:566] Translation: "q = on_line q l o, on_bline q o l" | |
I0204 16:05:21.533951 139642560315392 graph.py:498] | |
I0204 16:05:21.534170 139642560315392 graph.py:499] a b c d = quadrangle a b c d; e f = segment e f; g = on_line g a f, on_circle g e f; h = on_circum h f b g, on_line h a b; i = on_line i d f, on_circle i e f; j = on_circum j f c i, on_line j c d; k = on_line k a b, on_line k c d; l = on_circum l k h j, on_circle l e f; m = on_line m l a, on_circle m e f; n = on_line n l d, on_circle n e f; o = on_line o m b, on_line o n c; p = on_line p m l, on_bline p l m; q = on_line q l o, on_bline q o l ? cong e f e o | |
I0204 16:08:19.006508 139642560315392 alphageometry.py:191] | |
========================== | |
* From theorem premises: | |
A B C D E F G H I J K L M N O : Points | |
F,G,A are collinear [00] | |
EG = EF [01] | |
B,H,A are collinear [02] | |
B,F,H,G are concyclic [03] | |
EI = EF [04] | |
D,F,I are collinear [05] | |
J,D,C are collinear [06] | |
J,F,I,C are concyclic [07] | |
B,A,K are collinear [08] | |
D,C,K are collinear [09] | |
EL = EF [10] | |
H,L,J,K are concyclic [11] | |
L,M,A are collinear [12] | |
EM = EF [13] | |
D,L,N are collinear [14] | |
EN = EF [15] | |
N,O,C are collinear [16] | |
B,M,O are collinear [17] | |
* Auxiliary Constructions: | |
P Q : Points | |
L,M,P are collinear [18] | |
PL = PM [19] | |
O,L,Q are collinear [20] | |
QO = QL [21] | |
* Proof steps: | |
001. O,L,Q are collinear [20] & QO = QL [21] ⇒ Q is midpoint of LO [22] | |
002. B,F,H,G are concyclic [03] ⇒ ∠BHF = ∠BGF [23] | |
003. ∠BHF = ∠BGF [23] & B,H,A are collinear [02] & F,G,A are collinear [00] ⇒ ∠ABG = ∠HFA [24] | |
004. B,H,A are collinear [02] & F,G,A are collinear [00] & ∠BHF = ∠BGF [23] ⇒ ∠AHF = ∠BGA [25] | |
005. ∠AHF = ∠BGA [25] & ∠ABG = ∠HFA [24] (Similar Triangles)⇒ HA:FA = GA:BA [26] | |
006. EG = EF [01] & EM = EF [13] & EI = EF [04] & EL = EF [10] ⇒ G,L,M,F are concyclic [27] | |
007. G,L,M,F are concyclic [27] ⇒ ∠GLM = ∠GFM [28] | |
008. ∠GLM = ∠GFM [28] & L,M,A are collinear [12] & F,G,A are collinear [00] ⇒ ∠GLA = ∠AFM [29] | |
009. L,M,A are collinear [12] & F,G,A are collinear [00] & ∠GLM = ∠GFM [28] ⇒ ∠AMF = ∠LGA [30] | |
010. ∠AMF = ∠LGA [30] & ∠GLA = ∠AFM [29] (Similar Triangles)⇒ MA:FA = GA:LA [31] | |
011. HA:FA = GA:BA [26] & MA:FA = GA:LA [31] (Ratio chase)⇒ BA:MA = LA:HA [32] | |
012. L,M,A are collinear [12] & B,H,A are collinear [02] ⇒ ∠BAM = ∠HAL [33] | |
013. BA:MA = LA:HA [32] & ∠BAM = ∠HAL [33] (Similar Triangles)⇒ ∠(HL-AB) = ∠(AL-BM) [34] | |
014. H,L,J,K are concyclic [11] ⇒ ∠HLJ = ∠HKJ [35] | |
015. J,F,I,C are concyclic [07] ⇒ ∠JIF = ∠JCF [36] | |
016. D,F,I are collinear [05] & ∠JIF = ∠JCF [36] & J,D,C are collinear [06] ⇒ ∠DCF = ∠JID [37] | |
017. D,C,J are collinear [06] & ∠JIF = ∠JCF [36] & D,F,I are collinear [05] ⇒ ∠DFC = ∠IJD [38] | |
018. ∠DCF = ∠JID [37] & ∠DFC = ∠IJD [38] (Similar Triangles)⇒ DC:DF = DI:DJ [39] | |
019. EG = EF [01] & EN = EF [15] & EM = EF [13] & EI = EF [04] & F,M,G,L are concyclic [27] ⇒ I,L,N,F are concyclic [40] | |
020. I,L,N,F are concyclic [40] ⇒ ∠ILN = ∠IFN [41] | |
021. D,F,I are collinear [05] & D,L,N are collinear [14] & ∠ILN = ∠IFN [41] ⇒ ∠LID = ∠DNF [42] | |
022. D,F,I are collinear [05] & D,L,N are collinear [14] ⇒ ∠LDI = ∠NDF [43] | |
023. ∠LID = ∠DNF [42] & ∠LDI = ∠NDF [43] (Similar Triangles)⇒ LI:DL = FN:DF [44] | |
024. ∠LID = ∠DNF [42] & ∠LDI = ∠NDF [43] (Similar Triangles)⇒ LI:DI = FN:DN [45] | |
025. DC:DF = DI:DJ [39] & LI:DL = FN:DF [44] & LI:DI = FN:DN [45] (Ratio chase)⇒ DJ:DL = DN:DC [46] | |
026. D,C,J are collinear [06] & D,L,N are collinear [14] ⇒ ∠JDL = ∠CDN [47] | |
027. DJ:DL = DN:DC [46] & ∠JDL = ∠CDN [47] (Similar Triangles)⇒ ∠DJL = ∠CND [48] | |
028. D,L,N are collinear [14] & O,C,N are collinear [16] & L,M,A are collinear [12] & O,M,B are collinear [17] & ∠(HL-AB) = ∠(AL-BM) [34] & ∠HLJ = ∠HKJ [35] & B,A,K are collinear [08] & B,H,A are collinear [02] & D,C,K are collinear [09] & J,D,C are collinear [06] & ∠DJL = ∠CND [48] ⇒ ∠LNO = ∠LMO [49] | |
029. ∠LNO = ∠LMO [49] ⇒ O,L,M,N are concyclic [50] | |
030. O,L,M,N are concyclic [50] & EG = EF [01] & EN = EF [15] & EM = EF [13] & EI = EF [04] & EL = EF [10] & F,M,G,L are concyclic [27] ⇒ O,L,M,F are concyclic [51] | |
031. O,L,M,F are concyclic [51] ⇒ ∠OLF = ∠OMF [52] | |
032. EM = EF [13] & EL = EF [10] ⇒ E is the circumcenter of \Delta FML [53] | |
033. EM = EF [13] & EL = EF [10] ⇒ EM = EL [54] | |
034. P,L,M are collinear [18] & PL = PM [19] ⇒ P is midpoint of LM [55] | |
035. E is the circumcenter of \Delta FML [53] & P is midpoint of LM [55] ⇒ ∠LFM = ∠LEP [56] | |
036. P is midpoint of LM [55] & Q is midpoint of LO [22] ⇒ PQ ∥ MO [57] | |
037. Q,L,O are collinear [20] & ∠OLF = ∠OMF [52] & B,M,O are collinear [17] & ∠LFM = ∠LEP [56] & PQ ∥ MO [57] ⇒ ∠LEP = ∠LQP [58] | |
038. ∠LEP = ∠LQP [58] ⇒ Q,L,P,E are concyclic [59] | |
039. Q,L,P,E are concyclic [59] ⇒ ∠QLP = ∠QEP [60] | |
040. EM = EL [54] & PL = PM [19] ⇒ ML ⟂ EP [61] | |
041. ∠QLP = ∠QEP [60] & O,L,Q are collinear [20] & L,M,P are collinear [18] & L,M,A are collinear [12] & ML ⟂ EP [61] ⇒ OL ⟂ QE [62] | |
042. Q is midpoint of LO [22] & OL ⟂ QE [62] ⇒ EO = EL [63] | |
043. EO = EL [63] & EL = EF [10] ⇒ EF = EO | |
========================== | |
I0204 16:08:19.007035 139642560315392 alphageometry.py:195] Solution written to ag.out. | |
I0204 20:43:09.655949 139642560315392 alphageometry.py:581] Solved. | |