Spaces:
Sleeping
Sleeping
I0218 15:36:12.138049 140279694163968 graph.py:498] ceva_menelaus_hint | |
I0218 15:36:12.139024 140279694163968 graph.py:499] a b c = triangle; d = free; e = on_line b c, on_line a d; f = on_line c a, on_line b d; g = on_line a b, on_line c d; h = on_line c a, on_pline h b e f; i = on_line c d, on_pline i e a b; j = on_line b f, on_pline j e a c ? eqratio f h f a g b g a | |
I0218 15:36:15.467568 140279694163968 alphageometry.py:191] | |
========================== | |
* From theorem premises: | |
A B C D E F G H : Points | |
B,E,C are collinear [00] | |
A,D,E are collinear [01] | |
A,F,C are collinear [02] | |
B,D,F are collinear [03] | |
A,B,G are collinear [04] | |
G,D,C are collinear [05] | |
HB ∥ EF [06] | |
A,H,C are collinear [07] | |
* Auxiliary Constructions: | |
I J : Points | |
IE ∥ AB [08] | |
D,I,C are collinear [09] | |
JE ∥ AC [10] | |
B,J,F are collinear [11] | |
* Proof steps: | |
001. A,B,G are collinear [04] & EI ∥ AB [08] ⇒ BG ∥ EI [12] | |
002. D,I,C are collinear [09] & G,D,C are collinear [05] ⇒ C,G,I are collinear [13] | |
003. D,I,C are collinear [09] & G,D,C are collinear [05] ⇒ D,G,I are collinear [14] | |
004. BG ∥ EI [12] & B,E,C are collinear [00] & C,G,I are collinear [13] ⇒ BC:EC = BG:IE [15] | |
005. A,H,C are collinear [07] & A,F,C are collinear [02] ⇒ C,H,F are collinear [16] | |
006. BH ∥ EF [06] & B,E,C are collinear [00] & C,H,F are collinear [16] ⇒ BC:EC = BH:EF [17] | |
007. A,H,C are collinear [07] & A,F,C are collinear [02] & BH ∥ EF [06] & AC ∥ EJ [10] ⇒ ∠BHF = ∠FEJ [18] | |
008. B,D,F are collinear [03] & A,H,C are collinear [07] & A,F,C are collinear [02] & B,J,F are collinear [11] & AC ∥ EJ [10] ⇒ ∠BFH = ∠FJE [19] | |
009. ∠BHF = ∠FEJ [18] & ∠BFH = ∠FJE [19] (Similar Triangles)⇒ BH:EF = HF:JE [20] | |
010. BC:EC = BG:IE [15] & BC:EC = BH:EF [17] & BH:EF = HF:JE [20] ⇒ HF:JE = BG:IE [21] | |
011. A,G,B are collinear [04] & EI ∥ AB [08] ⇒ AG ∥ EI [22] | |
012. AG ∥ EI [22] & A,D,E are collinear [01] & D,G,I are collinear [14] ⇒ DE:AD = IE:AG [23] | |
013. A,C,F are collinear [02] & EJ ∥ AC [10] ⇒ JE ∥ FA [24] | |
014. B,J,F are collinear [11] & B,D,F are collinear [03] ⇒ D,J,F are collinear [25] | |
015. JE ∥ FA [24] & A,D,E are collinear [01] & D,J,F are collinear [25] ⇒ DE:AD = JE:AF [26] | |
016. DE:AD = IE:AG [23] & DE:AD = JE:AF [26] ⇒ JE:AF = IE:AG [27] | |
017. HF:JE = BG:IE [21] & JE:AF = IE:AG [27] ⇒ HF:AF = BG:AG | |
========================== | |
I0218 15:36:15.468291 140279694163968 alphageometry.py:195] Solution written to /home/tong_peng/onedrive_googie32u/agtest/ag.out4. | |