Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Use a Hebrew question-answering model
|
6 |
+
model_name = "avichr/heBERT"
|
7 |
+
|
8 |
+
question_answer = pipeline("question-answering", model=model_name, tokenizer=model_name)
|
9 |
+
|
10 |
+
def read_file_content(file_obj):
|
11 |
+
"""
|
12 |
+
Reads the content of a file object and returns it.
|
13 |
+
Parameters:
|
14 |
+
file_obj (file object): The file object to read from.
|
15 |
+
Returns:
|
16 |
+
str: The content of the file.
|
17 |
+
"""
|
18 |
+
try:
|
19 |
+
with open(file_obj.name, 'r', encoding='utf-8') as file:
|
20 |
+
context = file.read()
|
21 |
+
return context
|
22 |
+
except Exception as e:
|
23 |
+
return f"An error occurred: {e}"
|
24 |
+
|
25 |
+
def get_answer(file, question):
|
26 |
+
context = read_file_content(file)
|
27 |
+
answer = question_answer(question=question, context=context)
|
28 |
+
return answer["answer"]
|
29 |
+
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=get_answer,
|
32 |
+
inputs=[gr.File(label="Upload your file"), gr.Textbox(label="Input your question", lines=1)],
|
33 |
+
outputs=[gr.Textbox(label="Answer text", lines=1)],
|
34 |
+
title="Document Q & A - Hebrew",
|
35 |
+
description="This application will be used to answer questions based on the context provided."
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|