initial push
Browse files- .gitignore +2 -0
- app.py +35 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Virtual environments
|
2 |
+
venv
|
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import torch._dynamo
|
4 |
+
torch._dynamo.config.suppress_errors = True
|
5 |
+
|
6 |
+
# Load the model and tokenizer
|
7 |
+
model_id = "answerdotai/ModernBERT-base" # Replace with your conversational model if needed
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForMaskedLM.from_pretrained(model_id)
|
10 |
+
|
11 |
+
# Function for conversation
|
12 |
+
def conversation(input_text):
|
13 |
+
# Prepare the input text with a [MASK] token for a masked language model
|
14 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
15 |
+
|
16 |
+
# Generate predictions
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
|
20 |
+
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
|
21 |
+
predicted_token = tokenizer.decode(predicted_token_id)
|
22 |
+
|
23 |
+
return f"Predicted response: {predicted_token}"
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=conversation,
|
28 |
+
inputs=gr.Textbox(label="Enter your text (include [MASK]):"),
|
29 |
+
outputs=gr.Textbox(label="Predicted Response"),
|
30 |
+
title="Masked Language Model Conversation",
|
31 |
+
description="Type a sentence with [MASK] to predict the masked word using ModernBERT."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the interface
|
35 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
requests
|
4 |
+
Pillow
|
5 |
+
open_clip_torch
|
6 |
+
diffusers
|
7 |
+
transformers
|
8 |
+
bloom
|
9 |
+
# This is only needed for local deployment
|
10 |
+
gradio
|