File size: 1,282 Bytes
b31069e
b3efaf6
f1342ba
b31069e
 
bc557f4
f1342ba
 
 
 
 
6237635
f1342ba
 
c2f2340
f1342ba
 
 
 
 
 
4a49352
42117bb
f1342ba
 
 
 
e1bcbc6
f1342ba
e1bcbc6
b31069e
 
f1342ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import streamlit as st
import dotenv
import os

def main():
    
    dotenv.load_dotenv(dotenv_path=os.path.join('.streamlit', '.env'))

    st.set_page_config(page_title="RAG Agent", page_icon="🤖", layout="wide")

    audit_page = st.Page("audit_page/audit.py", title="Audit", icon="📋", default=True)
    dialog_page = st.Page("audit_page/dialogue_doc.py", title="Dialoguer avec le document", icon="💬")
    kg_page = st.Page("audit_page/knowledge_graph.py", title="Graphe de connaissance", icon="🧠")
    agents_page = st.Page("agents_page/catalogue.py", title="Catalogue des agents", icon="📇")
    compte_rendu = st.Page("audit_page/compte_rendu.py", title="Compte rendu", icon="📝")
    recommended_agents = st.Page("agents_page/recommended_agent.py", title="Agents recommandés", icon="⭐")
    chatbot = st.Page("chatbot_page/chatbot.py", title="Chatbot", icon="💬")
    documentation = st.Page("doc_page/documentation.py", title="Documentation", icon="📚")

    pg = st.navigation(
        {
            "Audit de contenus": [audit_page,dialog_page],
            "Equipe d'agents IA": [recommended_agents],
            "Chatbot": [chatbot],
            "Documentation": [documentation]
        }
    )

    pg.run()


if __name__ == "__main__":
    main()