Spaces:
Running
Running
File size: 22,827 Bytes
6237635 0222cea 6237635 d44debd 0222cea 6237635 d44debd 33ab192 5e3fa8e 6237635 0222cea 6237635 33ab192 6237635 33ab192 6237635 5f96521 33ab192 5f96521 0222cea 5e3fa8e 5f96521 6237635 0222cea 5e3fa8e 6237635 5e3fa8e 33ab192 6237635 33ab192 6237635 33ab192 6237635 33ab192 6237635 33ab192 6237635 5e3fa8e 6237635 5e3fa8e 18b9dfc adf8396 6237635 adf8396 6237635 adf8396 6237635 adf8396 6237635 adf8396 6237635 adf8396 6237635 adf8396 6237635 adf8396 6237635 adf8396 0222cea 6237635 adf8396 0222cea 6237635 0222cea 6237635 d44debd 6237635 d44debd 6237635 0222cea aa26a9b 0222cea aa26a9b 6237635 d44debd 6237635 d44debd 6237635 33ab192 d44debd 6237635 5e3fa8e 6237635 0222cea 6237635 0222cea 5e3fa8e 0222cea adf8396 0222cea 5e3fa8e 6237635 0222cea 6237635 0222cea 6237635 0222cea 33ab192 6237635 0222cea 6237635 0222cea 6237635 0222cea 6237635 5f96521 6237635 5f96521 33ab192 5f96521 6237635 d44debd 0222cea d44debd 6237635 0222cea 6237635 d44debd 33ab192 d44debd 6237635 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import streamlit as st
from textwrap import dedent
from utils.audit.rag import get_text_from_content_for_doc,get_text_from_content_for_audio
from utils.audit.response_llm import *
from langchain_core.messages import AIMessage, HumanMessage
from st_copy_to_clipboard import st_copy_to_clipboard
from utils.kg.construct_kg import get_graph,get_advanced_graph
from audit_page.knowledge_graph import *
import json
from time import sleep
import pickle
def graph_doc_to_json(graph):
nodes = []
edges = []
for node in graph.nodes:
node_id = node.id.replace(" ", "_")
label = node.id
type = node.type
nodes.append({"id": node_id, "label": label, "type": type})
for relationship in graph.relationships:
source = relationship.source
source_id = source.id.replace(" ", "_")
target = relationship.target
target_id = target.id.replace(" ", "_")
label = relationship.type
edges.append({"source": source_id, "label": label, "cible": target_id})
return {"noeuds": nodes, "relations": edges}
def advanced_graph_to_json(graph:KnowledgeGraph):
nodes = []
edges = []
for node in graph.entities:
node_id = node.name.replace(" ", "_")
label = node.name
type = node.label
nodes.append({"id": node_id, "label": label, "type": type})
for relationship in graph.relationships:
source = relationship.startEntity
source_id = source.name.replace(" ", "_")
target = relationship.endEntity
target_id = target.name.replace(" ", "_")
label = relationship.name
edges.append({"source": source_id, "label": label, "cible": target_id})
return {"noeuds": nodes, "relations": edges}
def chat_history_formatter(chat_history):
formatted_chat = ""
for message in chat_history:
if isinstance(message, AIMessage):
formatted_chat += f"AI:{message.content}\n\n"
elif isinstance(message, HumanMessage):
formatted_chat += f"Human:{message.content}\n\n"
return formatted_chat
def filter_correspondance(source_list:list[str],ref_dict:dict,reverse=False):
source_list = [item.lower().strip() for item in source_list]
if reverse:
return [key for key, value in ref_dict.items() if value.lower().strip() in source_list]
else:
# st.write(source_list)
# st.write(ref_dict.keys())
return [value for key, value in ref_dict.items() if key.lower().strip() in source_list]
@st.fragment()
def radio_choice():
options = ["compte_rendu","graphe de connaissance"]
choice = st.radio("Choisissez une option",options,index=st.session_state.radio_choice,horizontal=True,label_visibility="collapsed")
sleep(1)
if choice and options.index(choice) != st.session_state.radio_choice:
sleep(1)
st.session_state.radio_choice = options.index(choice)
return choice
def format_cr(cr:report):
formatted_cr = f"### Résumé :\n{cr.summary}\n\n### Notes :\n{cr.Notes}\n\n### Actions :\n{cr.Actions}"
return formatted_cr
def load_text_from_pkl(file_path:str):
with open(file_path,"rb") as f:
return pickle.load(f)
def load_graph_from_pkl(file_path:str):
with open(file_path,"rb") as f:
return pickle.load(f)
def doc_dialog_main():
st.title("Dialogue avec le document")
#init cr and chat history cr
if "cr" not in st.session_state:
st.session_state.cr = ""
if "cr_chat_history" not in st.session_state:
st.session_state.cr_chat_history = [
]
#init graph and filter views
if "graph" not in st.session_state:
st.session_state.graph = None
st.session_state.current_chunk_index = 0
st.session_state.number_of_entities = 0
st.session_state.number_of_relationships = 0
if "filter_views" not in st.session_state:
st.session_state.filter_views = {}
if "current_view" not in st.session_state:
st.session_state.current_view = None
if "node_types" not in st.session_state:
st.session_state.node_types = None
# if "summary" not in st.session_state:
# st.session_state.summary = None
if "chat_graph_history" not in st.session_state:
st.session_state.chat_graph_history = []
global_graph = load_graph_from_pkl("./utils/assets/kg_ia_signature.pkl")
st.write("graphe global chargé")
st.session_state.graph = global_graph
st.write("graphe global assigné")
# st.session_state.current_chunk_index = 0
# st.session_state.filter_views = {}
# st.session_state.current_view = None
# st.session_state.node_types = None
# st.session_state.chat_graph_history = []
st.write("searching for node types")
node_types = get_node_types_advanced(st.session_state.graph)
st.write("types de noeuds obtenus")
list_node_types = list(node_types)
sorted_node_types = sorted(list_node_types,key=lambda x: x.lower())
print(sorted_node_types)
st.write("tri des types de noeuds effectué")
nodes_type_dict = list_to_dict_colors(sorted_node_types)
st.write("dictionnaire de types de noeuds créé")
st.session_state.node_types = nodes_type_dict
st.session_state.filter_views["Vue par défaut"] = list(node_types)
st.session_state.current_view = "Vue par défaut"
st.write("finished init")
#######################################################################
#init a radio button for the choice
if "radio_choice" not in st.session_state:
st.session_state.radio_choice = None
# if "choice" not in st.session_state:
# st.session_state.choice = st.radio("Choisissez une option",["compte_rendu","graphe de connaissance"],index=st.session_state.radio_choice,horizontal=True,label_visibility="collapsed")
# choice = radio_choice()
options = ["compte_rendu","graphe de connaissance"]
choice = st.radio("Choisissez une option",options,index=st.session_state.radio_choice,horizontal=True,label_visibility="collapsed")
if choice and options.index(choice) != st.session_state.radio_choice:
st.session_state.radio_choice = options.index(choice)
audit = {"Mots clés": ""}
content = {}
text = load_text_from_pkl("./utils/assets/scenes.pkl")
st.write(text)
prompt_cr = dedent(f'''
À partir du document ci-dessous, générez un compte rendu détaillé contenant les sections suivantes :
2. **Résumé** : Fournissez une synthèse complète du document, en mettant en avant les points principaux, les relations essentielles, les concepts , les dates et les lieux, les conclusions et les détails importants.
3. **Notes** :
- Présentez les points clés sous forme de liste à puces avec des émojis pertinents pour souligner la nature de chaque point.
- N'oubliez pas de relever tout les entités et les relations.
- Incluez des sous-points (sans émojis) sous les points principaux pour offrir des détails ou explications supplémentaires.
4. **Actions** : Identifiez et listez les actions spécifiques, tâches ou étapes recommandées ou nécessaires selon le contenu du document.
**Document :**
{text}
**Format de sortie :**
### Résumé :
[Fournissez un résumé concis du document ici;n'oubliez pas de relever tout les entités et les relations.]
### Notes :
- 📌 **Point Principal 1**
- Sous-point A
- Sous-point B
- 📈 **Point Principal 2**
- Sous-point C
- Sous-point D
- 📝 **Point Principal 3**
- Sous-point E
- Sous-point F
### Actions :
1. [Action 1]
2. [Action 2]
3. [Action 3]
4. ...
---
''')
prompt_cr2 = dedent(F'''
À partir du document ci-dessous, identifiez le type d'ecrit puis, générez un compte rendu détaillé contenant les sections suivantes :
2. **Résumé** : Fournissez une synthèse complète du document, en mettant en avant les points principaux, les relations essentielles, les concepts , les dates et les lieux, les conclusions et les détails importants.
3. **Notes** :
- Présentez les points clés sous forme de liste à puces avec des émojis pertinents pour souligner la nature de chaque point.
- N'oubliez pas de relever tout les entités et les relations.
- Incluez des sous-points (sans émojis) sous les points principaux pour offrir des détails ou explications supplémentaires.
4. **Actions** : Identifiez et listez les actions spécifiques, tâches ou étapes recommandées ou nécessaires selon le contenu du document.
**Document :**
{text}
*Sortie :**
Soit exhaustive dans votre réponse, en incluant toutes les informations pertinentes et en les structurant de manière claire et précise, voici des mots clés extraits du document: {audit['Mots clés'].strip()}.
''')
if choice == "compte_rendu":
if "cr" not in st.session_state or st.session_state.cr == "":
with st.spinner("Génération du compte rendu..."):
#cr = generate_response_via_langchain(prompt_cr,stream=False,model="gpt-4o")
cr = generate_structured_response(prompt_cr2)
st.session_state.cr = cr
st.session_state.cr_chat_history = []
else:
cr = st.session_state.cr
if cr:
col1, col2 = st.columns([2.5, 1.5])
with col1.container(border=True,height=850):
st.markdown("##### Compte rendu")
keywords_paragraph = f"### Mots clés extraits:\n- {audit['Mots clés'].strip()}"
with st.container(height=650,border=False):
st.markdown(keywords_paragraph)
st.write(format_cr(cr))
# col_copy , col_success = st.columns([1,11])
# if col_copy.button("📋",key="copy_cr"):
with st.container(height=50,border=False):
st_copy_to_clipboard(f"{keywords_paragraph}\n\n{cr}",key="cp_but_cr")
# col_success.success("Compte rendu copié dans le presse-papier")
with col2.container(border=True,height=850):
st.markdown("##### Dialoguer avec le CR")
user_query = st.chat_input("Par ici ...")
if user_query is not None and user_query != "":
st.session_state.cr_chat_history.append(HumanMessage(content=user_query))
with st.container(height=600, border=False):
for message in st.session_state.cr_chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.markdown(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.write(message.content)
#check if last message is human message
if len(st.session_state.cr_chat_history) > 0:
last_message = st.session_state.cr_chat_history[-1]
if isinstance(last_message, HumanMessage):
with st.chat_message("AI"):
retreive = st.session_state.vectorstore.as_retriever()
context = retreive.invoke(last_message.content)
wrapped_prompt = f'''Étant donné le contexte suivant {context} et le compte rendu du document {cr}, {last_message.content}'''
response = st.write_stream(generate_response_via_langchain(wrapped_prompt,stream=True))
st.session_state.cr_chat_history.append(AIMessage(content=response))
# col_copy_c , col_success_c = st.columns([1,7])
# if col_copy_c.button("📋",key="copy_cr_chat"):
with st.container(height=50,border=False):
chat_formatted = chat_history_formatter(st.session_state.cr_chat_history)
st_copy_to_clipboard(chat_formatted,key="cp_but_cr_chat",show_text=False)
# col_success_c.success("Historique copié !")
elif choice == "graphe de connaissance":
# st.write(st.session_state.graph)
if "graph" not in st.session_state or st.session_state.graph == None:
keywords_list = [keyword.strip() for keyword in audit["Mots clés"].strip().split(",")]
with st.spinner("Construction du graphe de connaissance..."):
#graph = get_graph(text,allowed_nodes=allowed_nodes_types)
# chunk = st.session_state.chunks[st.session_state.current_chunk_index]
# print(chunk)
graph = global_graph
st.session_state.graph = graph
st.session_state.current_chunk_index = 0
st.session_state.filter_views = {}
st.session_state.current_view = None
st.session_state.node_types = None
st.session_state.chat_graph_history = []
node_types = get_node_types_advanced(graph)
list_node_types = list(node_types)
sorted_node_types = sorted(list_node_types,key=lambda x: x.lower())
print(sorted_node_types)
nodes_type_dict = list_to_dict_colors(sorted_node_types)
st.session_state.node_types = nodes_type_dict
st.session_state.filter_views["Vue par défaut"] = list(node_types)
st.session_state.current_view = "Vue par défaut"
else:
graph = st.session_state.graph
if graph is not None:
#st.write(graph)
edges,nodes,config = convert_advanced_neo4j_to_agraph(graph,st.session_state.node_types)
if "number_of_entities" not in st.session_state or "number_of_relationships" not in st.session_state or st.session_state.number_of_entities == 0 or st.session_state.number_of_relationships == 0:
st.session_state.number_of_entities = len(nodes)
st.session_state.number_of_relationships = len(edges)
col1, col2 = st.columns([2.5, 1.5])
with col1.container(border=True,height=900):
st.write("##### Visualisation du graphe (**"+st.session_state.current_view+"**)")
filter_col,add_view_col,change_view_col,color_col = st.columns([9,1,1,1])
if color_col.button("🎨",help="Changer la couleur"):
change_color_dialog()
if change_view_col.button("🔍",help="Changer de vue"):
change_view_dialog()
#add mots cles to evry label in audit["Mots clés"]
#filter_labels = [ label + " (mot clé)" if label.strip().lower() in audit["Mots clés"].strip().lower().split(",") else label for label in st.session_state.filter_views[st.session_state.current_view] ]
keywords_list = [keyword.strip().lower() for keyword in audit["Mots clés"].strip().split(",")]
dict_filters = {label: "Mot clé : "+label if label.strip().lower() in keywords_list else label for label in st.session_state.filter_views[st.session_state.current_view]}
default_target_filter = filter_correspondance(st.session_state.filter_views[st.session_state.current_view],dict_filters)
# st.write(default_target_filter)
# st.write(dict_filters)
sorted_default_target_filter = sorted(default_target_filter,key=lambda x: x.lower())
target_filter = filter_correspondance(list(st.session_state.node_types.keys()),dict_filters)
target_filter = sorted(target_filter,key=lambda x: x.lower())
filter = filter_col.multiselect("Filtrer selon l'étiquette",target_filter,placeholder="Sélectionner une ou plusieurs étiquettes",default=default_target_filter,label_visibility="collapsed")
filter = filter_correspondance(filter,dict_filters,reverse=True)
if add_view_col.button("➕",help="Ajouter une vue"):
add_view_dialog(filter)
if filter:
nodes = filter_nodes_by_types(nodes,filter)
selected = display_graph(edges,nodes,config)
# col_copy , col_success = st.columns([1,11])
# if col_copy.button("📋",key="copy_graph"):
with st.container(height=100,border=False):
graph_json = advanced_graph_to_json(graph)
subcol1,subcol2,subcol3 = st.columns([1,2,7])
with subcol1:
st_copy_to_clipboard(json.dumps(graph_json),key="cp_but_graph")
generate_button = subcol2.button("génerer plus",key="generate_more")
with subcol3:
if generate_button:
if st.session_state.current_chunk_index >= len(st.session_state.chunks):
st.info("Tous les chunks ont été traités")
else:
with st.spinner(f"Regénération du graphe en incluant le chunk {st.session_state.current_chunk_index} ..."):
new_graph = get_advanced_graph(st.session_state.chunks[st.session_state.current_chunk_index],st.session_state.graph)
st.session_state.graph = new_graph
st.session_state.current_chunk_index += 1
st.session_state.number_of_entities = len(new_graph.entities)
st.session_state.number_of_relationships = len(new_graph.relationships)
st.session_state.filter_views = {}
st.session_state.current_view = None
st.session_state.node_types = None
st.session_state.node_types = get_node_types_advanced(new_graph)
list_node_types = list(st.session_state.node_types)
sorted_node_types = sorted(list_node_types,key=lambda x: x.lower())
nodes_type_dict = list_to_dict_colors(sorted_node_types)
st.session_state.node_types = nodes_type_dict
st.session_state.filter_views["Vue par défaut"] = list(st.session_state.node_types)
st.session_state.current_view = "Vue par défaut"
st.rerun()
else:
st.write(f"{st.session_state.current_chunk_index}/ {len(st.session_state.chunks)} chunks traités ({st.session_state.number_of_entities} entités, {st.session_state.number_of_relationships} relations)")
# col_success.success("Graphe copié dans le presse-papier")
with col2.container(border=True,height=900):
st.markdown("##### Dialoguer avec le graphe")
user_query = st.chat_input("Par ici ...")
if user_query is not None and user_query != "":
st.session_state.chat_graph_history.append(HumanMessage(content=user_query))
with st.container(height=600, border=False):
for message in st.session_state.chat_graph_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.markdown(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.write(message.content)
#check if last message is human message
if len(st.session_state.chat_graph_history) > 0:
last_message = st.session_state.chat_graph_history[-1]
if isinstance(last_message, HumanMessage):
with st.chat_message("AI"):
retreive = st.session_state.vectorstore.as_retriever()
context = retreive.invoke(last_message.content)
wrapped_prompt = f"Étant donné le contexte suivant {context}, et le graph de connaissance: {graph}, {last_message.content}"
response = st.write_stream(generate_response_via_langchain(wrapped_prompt,stream=True))
st.session_state.chat_graph_history.append(AIMessage(content=response))
if selected is not None:
with st.chat_message("AI"):
st.markdown(f" EXPLORER LES DONNEES CONTENUES DANS **{selected}**")
prompts = [f"Extrait moi toutes les informations du noeud ''{selected}'' ➡️",
f"Montre moi les conversations autour du noeud ''{selected}'' ➡️"]
for i,prompt in enumerate(prompts):
button = st.button(prompt,key=f"p_{i}",on_click=lambda i=i: st.session_state.chat_graph_history.append(HumanMessage(content=prompts[i])))
# col_copy_c , col_success_c = st.columns([1,7])
# if col_copy_c.button("📋",key="copy_graph_chat"):
with st.container(height=50,border=False):
st_copy_to_clipboard(chat_history_formatter(st.session_state.chat_graph_history),key="cp_but_graph_chat",show_text=False)
# col_success_c.success("Historique copié !")
doc_dialog_main()
|