Spaces:
Running
Running
File size: 25,310 Bytes
f1342ba 5e3fa8e 7b897df 5e3fa8e d07e69f 5e3fa8e 9b707db c2f2340 5e3fa8e 0222cea 1e3f619 d07e69f 1e3f619 5e3fa8e 1e3f619 5e3fa8e 1e3f619 d07e69f 1e3f619 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 1e3f619 5e3fa8e 1e3f619 5e3fa8e 1e3f619 5e3fa8e 1e3f619 5e3fa8e 1e3f619 5e3fa8e f903fca 1e3f619 5e3fa8e 7b897df 5e3fa8e 0222cea 5e3fa8e 0222cea 5e3fa8e 0222cea 5e3fa8e 0222cea 5e3fa8e 0222cea 5e3fa8e 0222cea 5e3fa8e 0222cea 5e3fa8e 0222cea d07e69f 7b897df 5e3fa8e 9b707db 6237635 5e3fa8e 7b897df d07e69f 07a1739 d07e69f 07a1739 d07e69f 07a1739 d07e69f f1342ba 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 6237635 5596129 5e3fa8e 5596129 5e3fa8e 33ab192 5e3fa8e 33ab192 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 5596129 5e3fa8e 07a1739 5e3fa8e 5596129 d07e69f 5596129 5e3fa8e f1342ba 5e3fa8e c2f2340 1e3f619 5e3fa8e d07e69f 5e3fa8e 07a1739 5e3fa8e 5596129 7b897df 9b707db 1e3f619 5e3fa8e c2f2340 5e3fa8e 5596129 d07e69f 7b897df 5e3fa8e d07e69f 5e3fa8e 07a1739 5e3fa8e 7b897df 5e3fa8e 7b897df 5e3fa8e 7b897df d07e69f 5e3fa8e d07e69f 5e3fa8e d07e69f 5e3fa8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import streamlit as st
import pickle
import random
import math
from streamlit_agraph import agraph, Node, Edge, Config
from utils.kg.construct_kg import get_graph # if still needed for something else
from utils.audit.rag import get_text_from_content_for_doc, get_text_from_content_for_audio
from utils.audit.response_llm import generate_response_via_langchain,generate_llm_with_tools
from utils.audit.rag import get_vectorstore
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.prompts import PromptTemplate
from itext2kg.models import KnowledgeGraph
from typing_extensions import Annotated, TypedDict
import json
class AddRelationship(TypedDict):
'''Ajouter une relation au graphe'''
source_id : Annotated[str, 'The source node ID']
target_id : Annotated[str, 'The target node ID']
relationship_type : Annotated[str, 'The type of relationship']
class DeleteRelationship(TypedDict):
'''Supprimer une relation du graphe, une information est donnée sur la relation à supprimer'''
source_id : Annotated[str, 'The source node ID']
target_id : Annotated[str, 'The target node ID']
relationship_type : Annotated[str, 'The type of relationship']
tools = [AddRelationship, DeleteRelationship]
################################################################################
# Utility Functions
################################################################################
def if_node_exists(nodes, node_id):
"""Check if a node with the given id already exists in a list of Node objects."""
for node in nodes:
if node.id == node_id:
return node
return False
def generate_random_color():
"""Generate a random pastel-ish RGB color."""
r = random.randint(180, 255)
g = random.randint(180, 255)
b = random.randint(180, 255)
return (r, g, b)
def rgb_to_hex(rgb):
"""Convert an (R, G, B) tuple to a hex string like '#aabbcc'."""
return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])
def color_distance(color1, color2):
"""Calculate Euclidean distance between two RGB colors."""
return math.sqrt(
(color1[0] - color2[0])**2 +
(color1[1] - color2[1])**2 +
(color1[2] - color2[2])**2
)
def generate_distinct_colors(num_colors, min_distance=30):
"""
Generate a list of distinct pastel-ish colors (in hex), ensuring each is
at least `min_distance` away from the others in RGB space.
"""
colors = []
while len(colors) < num_colors:
new_color = generate_random_color()
if all(color_distance(new_color, existing_color) >= min_distance
for existing_color in colors):
colors.append(new_color)
return [rgb_to_hex(color) for color in colors]
def list_to_dict_colors(node_types):
"""
Create a dict mapping each node type to a random (distinct) hex color.
"""
number_of_colors = len(node_types)
color_hexes = generate_distinct_colors(number_of_colors)
return {typ: color_hexes[i] for i, typ in enumerate(node_types)}
def get_node_types_advanced(graph: KnowledgeGraph):
"""
Extract the set of node labels from an itext2kg KnowledgeGraph.
(graph.entities have .label, relationships have .startEntity, .endEntity)
"""
node_types = set()
dict_node_colors = {}
for node in graph.entities:
node_types.add(node.label)
for relationship in graph.relationships:
node_types.add(relationship.startEntity.label)
node_types.add(relationship.endEntity.label)
dict_node_colors = {node:rgb_to_hex(generate_random_color()) for node in node_types}
return node_types, dict_node_colors
################################################################################
# Graph Conversion
################################################################################
def get_node_types(graph):
"""
Extract the set of node types from a graph that has:
graph.nodes -> [ Node(id, type) ... ]
graph.relationships -> [ Relationship(source, target, type) ... ]
"""
node_types = set()
for node in graph.nodes:
node_types.add(node.type)
for rel in graph.relationships:
node_types.add(rel.source.type)
node_types.add(rel.target.type)
return node_types
def convert_neo4j_to_agraph(neo4j_graph, node_colors):
"""
Convert a “Neo4j-like” object into Agraph Nodes & Edges.
"""
nodes = []
edges = []
# Create nodes
for node in neo4j_graph.nodes:
node_id = node.id.replace(" ", "_")
label = node.id
type_ = node.type
new_node = Node(
id=node_id,
title=type_, # 'title' effectively becomes "type"
label=label,
size=25,
shape="circle",
color=node_colors.get(type_, "#cccccc")
)
if not if_node_exists(nodes, node_id):
nodes.append(new_node)
# Create edges
for rel in neo4j_graph.relationships:
source_id = rel.source.id.replace(" ", "_")
target_id = rel.target.id.replace(" ", "_")
# Ensure nodes exist (if not from the loop above):
if not if_node_exists(nodes, source_id):
nodes.append(Node(
id=source_id,
title=rel.source.type,
label=rel.source.id,
size=25,
shape="circle",
color=node_colors.get(rel.source.type, "#cccccc")
))
if not if_node_exists(nodes, target_id):
nodes.append(Node(
id=target_id,
title=rel.target.type,
label=rel.target.id,
size=25,
shape="circle",
color=node_colors.get(rel.target.type, "#cccccc")
))
edges.append(Edge(
source=source_id,
label=rel.type,
target=target_id
))
config = Config(
width=1200,
height=800,
directed=True,
physics=True,
hierarchical=True,
from_json="config.json"
)
return edges, nodes, config
def convert_advanced_neo4j_to_agraph(neo4j_graph: KnowledgeGraph, node_colors):
"""
Same logic as above, but adapted to an itext2kg.models.KnowledgeGraph object
(graph.entities, graph.relationships).
"""
nodes = []
edges = []
# Create nodes
for node in neo4j_graph.entities:
node_id = node.name.replace(" ", "_")
label = node.name
type_ = node.label
new_node = Node(
id=node_id,
title=type_,
label=label,
size=25,
shape="circle",
color=node_colors[type_]
)
if not if_node_exists(nodes, new_node.id):
nodes.append(new_node)
# Create edges
for relationship in neo4j_graph.relationships:
source = relationship.startEntity
target = relationship.endEntity
source_id = source.name.replace(" ", "_")
target_id = target.name.replace(" ", "_")
# Ensure existence of the source node
if not if_node_exists(nodes, source_id):
nodes.append(Node(
id=source_id,
title=source.label,
label=source.name,
size=25,
shape="circle",
color=node_colors.get(source.label, "#CCCCCC")
))
# Ensure existence of the target node
if not if_node_exists(nodes, target_id):
nodes.append(Node(
id=target_id,
title=target.label,
label=target.name,
size=25,
shape="circle",
color=node_colors.get(target.label, "#CCCCCC")
))
edges.append(Edge(
source=source_id,
label=relationship.name,
target=target_id
))
config = Config(
width=1200,
height=800,
directed=True,
physics=True,
hierarchical=True,
from_json="config.json"
)
return edges, nodes, config
def display_graph(edges, nodes, config):
"""Render Agraph."""
return agraph(edges=edges, nodes=nodes, config=config)
def filter_nodes_by_types(nodes, node_types_filter):
"""
Filter out Agraph nodes by the node’s 'title' field (which is used as 'type' here).
"""
if not node_types_filter:
return nodes
return [node for node in nodes if node.title in node_types_filter]
def format_relationships(relationships : list[Edge]):
"""Format relationships for display in the chat."""
return "\n".join(
f"- **{rel.source}** -- {rel.label} --> **{rel.to}**"
for rel in relationships
)
def fortmat_nodes(nodes : list[Node]):
"""Format nodes for display in the chat."""
return "\n".join(
f"- **{node.label}** ({node.title})"
for node in nodes
)
def add_relationship_to_graph(source_id, target_id, relationship_type):
st.session_state.edges.append(Edge(source=source_id, label=relationship_type, target=target_id))
print(f"Relation ajoutée: {source_id} -- {relationship_type} --> {target_id}")
if not if_node_exists(st.session_state.nodes, source_id):
st.session_state.nodes.append(Node(
id=source_id,
title="Autre",
label=source_id,
size=25,
shape="circle",
color=st.session_state.node_types.get(target.label, "#CCCCCC")
))
print(f"Node ajouté: {source_id}")
print(f"Nodes: {fortmat_nodes(st.session_state.nodes)}")
def delete_relationship_from_graph(source_id, target_id, relationship_type):
st.session_state.edges = [edge for edge in st.session_state.edges if not (
edge.source == source_id and edge.to == target_id and edge.label == relationship_type
)]
################################################################################
# Dialog Components (same as your original code)
################################################################################
@st.dialog(title="Changer la vue")
def change_view_dialog():
"""
Dialog to rename or delete existing views from st.session_state.filter_views
and choose the active one (st.session_state.current_view).
"""
st.write("Changer la vue")
for index, item in enumerate(st.session_state.filter_views.keys()):
emp = st.empty()
col1, col2, col3 = emp.columns([8, 1, 1])
# Delete the view (except for the default if you want)
if index > 0 and col2.button("🗑️", key=f"del{index}"):
del st.session_state.filter_views[item]
st.session_state.current_view = "Vue par défaut"
st.rerun()
# Choose the view
but_content = "🔍" if st.session_state.current_view != item else "✅"
if col3.button(but_content, key=f"valid{index}"):
st.session_state.current_view = item
st.rerun()
# Show details / rename
if len(st.session_state.filter_views.keys()) > index:
with col1.expander(item):
# Don’t allow renaming the default view (index=0) if you want
if index > 0:
change_name = st.text_input(
"Nom de la vue",
label_visibility="collapsed",
placeholder="Changez le nom de la vue",
key=f"change_name{index}"
)
if st.button("Renommer", key=f"rename{index}"):
if change_name.strip():
st.session_state.filter_views[change_name] = st.session_state.filter_views.pop(item)
st.session_state.current_view = change_name
st.rerun()
st.markdown(
"\n".join(f"- {label.strip()}"
for label in st.session_state.filter_views[item])
)
else:
emp.empty()
@st.dialog(title="Ajouter une vue")
def add_view_dialog(filters):
"""
Dialog to add a new “view” to st.session_state.filter_views, specifying which types to filter by.
"""
st.write("Ajouter une vue")
view_name = st.text_input("Nom de la vue")
st.markdown("Les filtres actuels :")
st.write(filters)
if st.button("Ajouter la vue"):
if view_name.strip():
st.session_state.filter_views[view_name] = filters
st.session_state.current_view = view_name
st.rerun()
@st.dialog(title="Changer la couleur")
def change_color_dialog():
"""Dialog to interactively change colors of each node type via color pickers."""
st.write("Changer la couleur")
for node_type, color in st.session_state.node_types.items():
new_color = st.color_picker(
f"La couleur de l'entité **{node_type.strip()}**",
color
)
print("New color:", new_color)
print("Old color:", color)
st.session_state.node_types[node_type] = new_color
if st.button("Valider"):
st.rerun()
@st.dialog(title="Modifier l'etiquette du noeud")
def change_node_label_dialog(selected_node_id):
"""Dialog to change the label of a node."""
node : Node = if_node_exists(st.session_state.nodes, selected_node_id)
st.write("- **Nom:** ", node.label)
st.write("- **Etiquette:** ", node.title)
if node:
new_label = st.selectbox("Etiquette du noeud",list(st.session_state.node_types.keys())+["Autre"],index=list(st.session_state.node_types.keys()).index(node.title))
if new_label == "Autre":
new_label_text = st.text_input("Nouvelle étiquette")
if st.button("Valider") and new_label:
if new_label == "Autre" and new_label_text:
st.session_state.node_types[new_label_text] = rgb_to_hex(generate_random_color())
node.title = new_label_text
st.success(f"Etiquette du noeud {selected_node_id} modifiée en {new_label_text}")
st.rerun()
node.title = new_label
st.success(f"Etiquette du noeud {selected_node_id} modifiée en {new_label}")
st.rerun()
################################################################################
# Main KG Function
################################################################################
def kg_main():
# 1. Load your pickles (if not already loaded in session state)
if "scenes" not in st.session_state:
with open("./utils/assets/scenes.pkl", "rb") as f:
st.session_state.scenes = pickle.load(f)
st.session_state.vectorstore = get_vectorstore(st.session_state.scenes)
if "graph" not in st.session_state:
with open("./utils/assets/kg_ia_signature.pkl", "rb") as f:
# Depending on how you stored it, it might be a tuple (graph, extra_info)
# or directly a single object. Adjust as needed.
st.session_state.graph = pickle.load(f)
print("Graph loaded.")
# 2. Initialize other session keys if they don’t exist
if "filter_views" not in st.session_state:
st.session_state.filter_views = {}
if "current_view" not in st.session_state:
st.session_state.current_view = None
if "node_types" not in st.session_state:
st.session_state.node_types = None
if "chat_graph_history" not in st.session_state:
st.session_state.chat_graph_history = []
st.title("Graphe de connaissance")
# If we haven’t set up node types yet, do it now
if st.session_state.node_types is None:
# st.session_state.graph is presumably a list/tuple => st.session_state.graph[0]
# Or just st.session_state.graph if you stored it directly as a single obj
node_types, st.session_state.node_types = get_node_types_advanced(st.session_state.graph)
# st.write(f"Types d'entités trouvés : {node_types}")
print("Couleurs attribuées")
# Initialize a default filter view
st.session_state.filter_views["Vue par défaut"] = list(node_types)
st.session_state.filter_views["Personnages"] = "Person"
st.session_state.filter_views["Lieux"] = ["Location"]
st.session_state.filter_views["Concepts"] = ["Concept"]
st.session_state.current_view = "Personnages"
if "edges" not in st.session_state or "nodes" not in st.session_state:
# Convert the graph to Agraph format
st.session_state.edges, st.session_state.nodes, st.session_state.config = convert_advanced_neo4j_to_agraph(
st.session_state.graph, st.session_state.node_types
)
# 3. Convert the graph to agraph format
edges = st.session_state.edges
nodes = st.session_state.nodes
config = st.session_state.config
print("Graph converti en Agraph")
#ask chatgpt to analyse the graph
prompt = ("Tu es un expert en graphes de connaissances, analyse le graphe et donne une synthèse et differentes conclusions sur les elements du recit, tout en etant pertinent et precis",
"**Graphe**:,"
f"**Noeuds**: {fortmat_nodes(st.session_state.nodes)}\n"
f"Relations: {format_relationships(st.session_state.edges)}",
"Output: tu dois donner une synthèse et des conclusions sur les elements du recit , ca sera le premier message de la conversation"),
response = generate_response_via_langchain(prompt)
st.session_state.chat_graph_history.append(AIMessage(content=response))
# 4. UI layout: (left) the graph itself, (right) the chat
col1, col2 = st.columns([3, 1])
with col1.container(border=True,height=800):
st.write(f"#### Visualisation du graphe (**{st.session_state.current_view}**)")
filter_col, add_view_col, change_view_col, color_col = st.columns([9, 1, 1, 1])
if color_col.button("🎨", help="Changer la couleur"):
change_color_dialog()
if change_view_col.button("🔍", help="Changer de vue"):
change_view_dialog()
# Currently selected filter for the chosen view
current_filters = st.session_state.filter_views.get(st.session_state.current_view, [])
filter_selection = filter_col.multiselect(
"Filtrer selon l'étiquette",
st.session_state.node_types.keys(),
default=current_filters,
label_visibility="collapsed"
)
if add_view_col.button("➕", help="Ajouter une vue"):
add_view_dialog(filter_selection)
# Filter out nodes that don’t match the chosen types
filtered_nodes = filter_nodes_by_types(nodes, filter_selection)
col_graph , col_buttons = st.columns([12, 1])
# Render the graph
print("Affichage du graphe")
with col_graph.container():
selected_node_id = display_graph(edges, filtered_nodes, config)
print("Graphe affiché")
with col_buttons.container():
# modify node button with emoji
if selected_node_id:
if st.button("📝",key="change label"):
st.write(f"**Node sélectionné**: `{selected_node_id}`")
change_node_label_dialog(selected_node_id)
if selected_node_id:
st.write(f"**Noeud sélectionné**: `{selected_node_id}`")
# 5. Chat UI
with col2.container(border=True,height=800):
st.markdown("#### Dialoguer avec le graphe")
user_query = st.chat_input("Votre question ...")
if user_query:
st.session_state.chat_graph_history.append(HumanMessage(content=user_query))
with st.container():
# Display the existing chat
for message in st.session_state.chat_graph_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.markdown(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.write(message.content)
# If the last message is from the user, we try to generate a response
if (len(st.session_state.chat_graph_history) > 0 and
isinstance(st.session_state.chat_graph_history[-1], HumanMessage)):
last_message = st.session_state.chat_graph_history[-1]
with st.chat_message("AI"):
# Example retrieval (if you have a vectorstore in session state)
# and want to incorporate scenes or graph data:
prompt_tool_calling = ("Ta mission est de decider selon la query de l'utilisateur s'il y'a un outil qui correspont et il faut l'appeler, tu dois aussi savoir si on va supprimer une relation ou plutot ajouter une relation\n"
"Tu as 2 outils , un pour supprimer une relation et l'autre ajouter une relation dans un graphe\n"
"si un outil est appelé, tu dois le dire à l'utilisateur et tu dois bien extraire les id des noeuds et le type de relation\n"
"si l'id du noeud existe dans le graphe, extrait le exactement et si le type de relation existe dans le graphe, extrait le exactement\n"
f"**query de l'utilisateur** : {last_message.content}\n"
f"**Graph**: {format_relationships(st.session_state.edges)}\n"
f"sinon tu dois renvoyé: 'Pas d'outils appelé'\n"
f"les outils sont: {tools}\n"
f"Output: tu dois ecrire soit 'outil appelé' apres avoir identifier les differents elements soit 'Pas d'outils appelé'\n")
tools_called = generate_llm_with_tools(tools=tools,query=prompt_tool_calling)
print(tools_called)
if 'tool_calls' in tools_called.additional_kwargs:
for tool_call in tools_called.additional_kwargs['tool_calls']:
func_name = tool_call["function"]["name"]
raw_args = tool_call["function"]["arguments"]
parsed_args = json.loads(raw_args) # Convert JSON string to dict
source_id = parsed_args["source_id"]
target_id = parsed_args["target_id"]
relationship_type = parsed_args["relationship_type"]
if func_name == "AddRelationship":
add_relationship_to_graph(source_id, target_id, relationship_type)
st.write(f"Relation ajoutée: {source_id} -- {relationship_type} --> {target_id}")
elif func_name == "DeleteRelationship":
delete_relationship_from_graph(source_id, target_id, relationship_type)
st.write(f"Relation supprimée: {source_id} -- {relationship_type} --> {target_id}")
if "vectorstore" in st.session_state:
retriever = st.session_state.vectorstore.as_retriever()
context = retriever.invoke(last_message.content)
prompt = (
f"Contexte depuis les 'scenes': {st.session_state.scenes}\n"
f"Contexte vectorstore: {context}\n"
f"Question: {last_message.content}\n"
f"Graph: {st.session_state.graph}\n" # If you want to embed your entire graph
)
response = st.write_stream(
generate_response_via_langchain(prompt, stream=True)
)
st.session_state.chat_graph_history.append(AIMessage(content=response))
else:
# Fallback if no vectorstore
st.write("Aucune base de vecteurs disponible.")
st.session_state.chat_graph_history.append(AIMessage(content="(Pas de vectorstore)"))
# If the user clicked on a node in the graph, we can propose quick prompts
if selected_node_id:
with st.chat_message("AI"):
st.markdown(f"**Vous avez sélectionné**: `{selected_node_id}`")
quick_prompts = [
f"Donne-moi plus d'informations sur le noeud '{selected_node_id}'",
f"Montre-moi les relations de '{selected_node_id}' dans ce graphe"
]
for i, qprompt in enumerate(quick_prompts):
if st.button(qprompt, key=f"qp_{i}"):
st.session_state.chat_graph_history.append(HumanMessage(content=qprompt))
kg_main() |