Spaces:
Running
Running
Ilyas KHIAT
commited on
Commit
·
a336311
1
Parent(s):
6eda836
first push
Browse files- .dockerignore +11 -0
- .gitignore +2 -0
- Dockerfile +13 -0
- README copy.md +10 -0
- kg_ia_signature.pkl +3 -0
- main.py +170 -0
- prompt.py +26 -0
- rag.py +63 -0
.dockerignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.pyc
|
3 |
+
*.pyo
|
4 |
+
*.pyd
|
5 |
+
.Python
|
6 |
+
env/
|
7 |
+
venv/
|
8 |
+
.git
|
9 |
+
.dockerignore
|
10 |
+
Dockerfile
|
11 |
+
*.md
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.env
|
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
COPY --chown=user . /app
|
13 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README copy.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: MY ASSISTANT API
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
kg_ia_signature.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55b49436038a45405798f6d05591464b1a35360409d83dbead163921707ac592
|
3 |
+
size 7354091
|
main.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File,Request,Depends,status,BackgroundTasks
|
2 |
+
from fastapi.security import OAuth2PasswordBearer
|
3 |
+
from pydantic import BaseModel, Json,EmailStr
|
4 |
+
from typing import Optional
|
5 |
+
from pinecone import Pinecone, ServerlessSpec
|
6 |
+
from uuid import uuid4
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from rag import *
|
10 |
+
from fastapi.responses import StreamingResponse
|
11 |
+
import json
|
12 |
+
from prompt import *
|
13 |
+
from typing import Literal
|
14 |
+
import time
|
15 |
+
from fastapi.middleware.cors import CORSMiddleware
|
16 |
+
import requests
|
17 |
+
|
18 |
+
import smtplib
|
19 |
+
from email.mime.text import MIMEText
|
20 |
+
|
21 |
+
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
## setup pinecone index
|
25 |
+
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
|
26 |
+
|
27 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
28 |
+
|
29 |
+
index_name = os.environ.get("INDEX_NAME") # change if desired
|
30 |
+
|
31 |
+
existing_indexes = [index_info["name"] for index_info in pc.list_indexes()]
|
32 |
+
|
33 |
+
if index_name not in existing_indexes:
|
34 |
+
pc.create_index(
|
35 |
+
name=index_name,
|
36 |
+
dimension=1536,
|
37 |
+
metric="cosine",
|
38 |
+
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
|
39 |
+
)
|
40 |
+
while not pc.describe_index(index_name).status["ready"]:
|
41 |
+
time.sleep(1)
|
42 |
+
|
43 |
+
index = pc.Index(index_name)
|
44 |
+
|
45 |
+
vector_store = PineconeVectorStore(index=index, embedding=embedding)
|
46 |
+
|
47 |
+
## setup authorization
|
48 |
+
api_keys = [os.environ.get("FASTAPI_API_KEY")]
|
49 |
+
|
50 |
+
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") # use token authentication
|
51 |
+
|
52 |
+
|
53 |
+
def api_key_auth(api_key: str = Depends(oauth2_scheme)):
|
54 |
+
if api_key not in api_keys:
|
55 |
+
raise HTTPException(
|
56 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
57 |
+
detail="Forbidden"
|
58 |
+
)
|
59 |
+
|
60 |
+
dev_mode = os.environ.get("DEV")
|
61 |
+
|
62 |
+
if dev_mode == "True":
|
63 |
+
app = FastAPI()
|
64 |
+
else:
|
65 |
+
app = FastAPI(dependencies=[Depends(api_key_auth)])
|
66 |
+
|
67 |
+
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
|
68 |
+
|
69 |
+
# Pydantic model for the form data
|
70 |
+
class ContactForm(BaseModel):
|
71 |
+
name: str
|
72 |
+
email: EmailStr
|
73 |
+
message: str
|
74 |
+
|
75 |
+
def send_simple_message(to,subject,text):
|
76 |
+
api_key = os.getenv("MAILGUN_API_KEY")
|
77 |
+
|
78 |
+
return requests.post(
|
79 |
+
"https://api.mailgun.net/v3/sandboxafc6970ffdab40ee9566a4e180b117fd.mailgun.org/messages",
|
80 |
+
auth=("api", api_key),
|
81 |
+
data={"from": "Excited User <[email protected]>",
|
82 |
+
"to": [to],
|
83 |
+
"subject": subject,
|
84 |
+
"text": text})
|
85 |
+
|
86 |
+
# Function to send email
|
87 |
+
def send_email(form_data: ContactForm):
|
88 |
+
# sender_email = os.getenv("SENDER_EMAIL")
|
89 |
+
# sender_password = os.getenv("SENDER_PASSWORD")
|
90 |
+
|
91 |
+
receiver_email = os.getenv("RECEIVER_EMAIL") # Your email
|
92 |
+
|
93 |
+
# Setup the message content
|
94 |
+
text = f"Name: {form_data.name}\nEmail: {form_data.email}\nMessage: {form_data.message}"
|
95 |
+
title = "New message from your website!"
|
96 |
+
|
97 |
+
# Send the email
|
98 |
+
try:
|
99 |
+
send_simple_message(receiver_email,title,text)
|
100 |
+
except Exception as e:
|
101 |
+
print(e)
|
102 |
+
return {"message": "Failed to send email."}
|
103 |
+
|
104 |
+
# Endpoint to handle form submission
|
105 |
+
@app.post("/send_email")
|
106 |
+
async def send_contact_form(form_data: ContactForm, background_tasks: BackgroundTasks):
|
107 |
+
background_tasks.add_task(send_email, form_data)
|
108 |
+
return {"message": "Email sent successfully!"}
|
109 |
+
|
110 |
+
class UserInput(BaseModel):
|
111 |
+
query: str
|
112 |
+
stream: Optional[bool] = False
|
113 |
+
messages: Optional[list[dict]] = []
|
114 |
+
|
115 |
+
class ChunkToDB(BaseModel):
|
116 |
+
message: str
|
117 |
+
title: str
|
118 |
+
|
119 |
+
|
120 |
+
@app.post("/add_chunk_to_db")
|
121 |
+
async def add_chunk_to_db(chunk: ChunkToDB):
|
122 |
+
try:
|
123 |
+
title = chunk.title
|
124 |
+
message = chunk.message
|
125 |
+
return get_vectorstore(text_chunk=message,index=index,title=title)
|
126 |
+
except Exception as e:
|
127 |
+
return {"message": str(e)}
|
128 |
+
|
129 |
+
|
130 |
+
@app.get("/list_vectors")
|
131 |
+
async def list_vectors():
|
132 |
+
try:
|
133 |
+
return index.list()
|
134 |
+
except Exception as e:
|
135 |
+
return {"message": str(e)}
|
136 |
+
|
137 |
+
|
138 |
+
@app.post("/generate")
|
139 |
+
async def generate(user_input: UserInput):
|
140 |
+
try:
|
141 |
+
print(user_input.stream,user_input.query)
|
142 |
+
if user_input.stream:
|
143 |
+
return StreamingResponse(generate_stream(user_input.query,user_input.messages,index_name=index,stream=True,vector_store=vector_store),media_type="application/json")
|
144 |
+
else:
|
145 |
+
return generate_stream(user_input.query,user_input.messages,index_name=index,stream=False,vector_store=vector_store)
|
146 |
+
except Exception as e:
|
147 |
+
return {"message": str(e)}
|
148 |
+
|
149 |
+
@app.post("/retreive_context")
|
150 |
+
async def retreive_context_response(query: str):
|
151 |
+
try:
|
152 |
+
return retreive_context(index=index,query=query)
|
153 |
+
except Exception as e:
|
154 |
+
return {"message": str(e)}
|
155 |
+
|
156 |
+
|
157 |
+
@app.delete("/delete_vector")
|
158 |
+
async def delete_vector(filename_id: str):
|
159 |
+
try:
|
160 |
+
return index.delete(ids=[filename_id])
|
161 |
+
except Exception as e:
|
162 |
+
return {"message": str(e)}
|
163 |
+
|
164 |
+
@app.get("/check_server")
|
165 |
+
async def check_server():
|
166 |
+
return {"message":"Server is running"}
|
167 |
+
|
168 |
+
@app.get("/")
|
169 |
+
async def read_root():
|
170 |
+
return {"message":"Welcome to the AI API"}
|
prompt.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
template_sphinx = '''
|
2 |
+
Voici un résumé et un bout du récit de {writer}, l'auteur de {book_name}. Vous êtes le Grand Sphinx, maître des énigmes et des questions.
|
3 |
+
Vous devez tester si quelqu'un a lu le récit en lui posant une question qui lui ouvrira la porte vers la réalité de ce récit.
|
4 |
+
Votre question doit être en français, et vous devez l'associer aux réponses possibles.
|
5 |
+
|
6 |
+
**résumé**:
|
7 |
+
{summary}
|
8 |
+
|
9 |
+
**Extrait**:
|
10 |
+
{excerpt}
|
11 |
+
|
12 |
+
**Sortie**:
|
13 |
+
La sortie doit être une question en français, qui teste la compréhension du récit. Vous devez fournir les réponses possibles à cette question.
|
14 |
+
|
15 |
+
'''
|
16 |
+
|
17 |
+
template = '''
|
18 |
+
You are an AI assistant for Ilyas Khiat, a future engineer with a major in AI, and software engineering. Your job is to respond to visistors in the most human way . Always provide links if necessary (e.g., LinkedIn: https://www.linkedin.com/in/ilyas-khiat-148a73254/ ) Ensure your tone is pleaseant, and respond precisely to the user's query. if the context is not pertinent or you don't have enough information, **DON'T HALLUCINATE**.
|
19 |
+
The context retreived from the user is:
|
20 |
+
{context}
|
21 |
+
{history}
|
22 |
+
The user's query is:
|
23 |
+
{query}
|
24 |
+
|
25 |
+
Please respond to the user's query in a consis way and well formatted markdown with paragraphs and emojis. If the question is about my values , highlights Ilyas' technical expertise **without exageration**, projects and their **links**, and how he adds value to potential employers, plus soft skills. Add life to your answer and emphasize keywords with bold, MAKE IT **SHORT** in no more than **150 WORDS** or 200 tokens. Ensure your tone is pleasant, engaging, and matches the language of the user's query and your response is not bluffing and exaggerating but honest and convincing.
|
26 |
+
'''
|
rag.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2 |
+
from langchain_openai import OpenAIEmbeddings
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_core.documents import Document
|
5 |
+
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_core.output_parsers import StrOutputParser
|
8 |
+
from langchain_core.prompts import PromptTemplate
|
9 |
+
from uuid import uuid4
|
10 |
+
from prompt import *
|
11 |
+
|
12 |
+
from pydantic import BaseModel, Field
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
import os
|
15 |
+
|
16 |
+
from langchain_core.tools import tool
|
17 |
+
|
18 |
+
import unicodedata
|
19 |
+
|
20 |
+
load_dotenv()
|
21 |
+
index_name = os.environ.get("INDEX_NAME")
|
22 |
+
# Global initialization
|
23 |
+
embedding_model = "text-embedding-3-small"
|
24 |
+
|
25 |
+
embedding = OpenAIEmbeddings(model=embedding_model)
|
26 |
+
# vector_store = PineconeVectorStore(index=index_name, embedding=embedding)
|
27 |
+
|
28 |
+
class sphinx_output(BaseModel):
|
29 |
+
question: str = Field(description="The question to ask the user to test if they read the entire book")
|
30 |
+
answers: list[str] = Field(description="The possible answers to the question to test if the user read the entire book")
|
31 |
+
|
32 |
+
llm = ChatOpenAI(model="gpt-4o-mini", max_tokens=300, temperature=0.5)
|
33 |
+
|
34 |
+
|
35 |
+
def get_random_chunk(chunks: list[str]) -> str:
|
36 |
+
return chunks[tool.random_int(0, len(chunks) - 1)]
|
37 |
+
|
38 |
+
def get_vectorstore(chunks: list[str]) -> FAISS:
|
39 |
+
vector_store = FAISS(index=index_name, embedding=embedding)
|
40 |
+
for chunk in chunks:
|
41 |
+
document = Document(text=chunk, id=str(uuid4()))
|
42 |
+
vector_store.index(document)
|
43 |
+
return vector_store
|
44 |
+
|
45 |
+
def generate_stream(query:str,messages = [], model = "gpt-4o-mini", max_tokens = 300, temperature = 0.5,index_name="",stream=True,vector_store=None):
|
46 |
+
try:
|
47 |
+
print("init chat")
|
48 |
+
print("init template")
|
49 |
+
prompt = PromptTemplate.from_template(template)
|
50 |
+
print("retreiving context")
|
51 |
+
context = retreive_context(query=query,index=index_name,vector_store=vector_store)
|
52 |
+
print(f"Context: {context}")
|
53 |
+
llm_chain = prompt | llm | StrOutputParser()
|
54 |
+
|
55 |
+
print("streaming")
|
56 |
+
if stream:
|
57 |
+
return llm_chain.stream({"context":context,"history":messages,"query":query})
|
58 |
+
else:
|
59 |
+
return llm.invoke(query)
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(e)
|
63 |
+
return False
|